

The Complete
Guide to JFugue

Programming Music in Java™

Second Edition
Updated for JFugue 5

The Complete Guide to JFugue

 2

The Complete Guide to JFugue

 3

The Complete

Guide to JFugue

Programming Music in Java™

Second Edition

The Complete Guide to JFugue

 4

The Complete Guide to JFugue: Programming Music in JavaTM

Second Edition.
Book Version 2.0.0 – April 2, 2016

© Copyright 2016 by David Koelle

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means without permission

by the author.

http://www.jfugue.org

All brand names and product names used in this book are trade names,

service marks, trademarks, or registered trademarks of their respective
owners. Neither David Koelle nor JFugue is associated with any product

or vendor mentioned in this book.

LIMIT OF LIABILITY AND DISCLAIMER OF WARRANTY: THE AUTHOR
HAS USED HIS BEST EFFORT IN PREPARING THIS BOOK, AND MAKES

NO REPRESENTATION OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK

AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE
AUTHOR SHALL NOT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY

OTHER COMMERCIAL DAMAGES.

About the Cover Image

Derivative work on Abraham Bosse’s “Hearing” (original ca. 1630)

The image used as source material for the cover of this book is in the
public domain because its copyright has expired in the United States and
those countries with a copyright term of no more than the life of the

author plus 100 years. According to Bridgeman Art Library v. Corel Corp.,
36 F. Supp. 2d 191, photographic reproductions of visual works in the

public domain are not copyrightable because the reproductions involve
no originality. According to US Copyright Law, work in the public domain
may be used for a derivative work. The image used as source material for

the cover of this book is the full-resolution image linked from
http://en.wikipedia.org/wiki/Image:ABosseHearing.jpg and labeled as
being in the public domain, retrieved on April 4, 2008.

http://www.jfugue.org/
http://en.wikipedia.org/wiki/Image:ABosseHearing.jpg

The Complete Guide to JFugue

 5

For Joshua Gooding (skavookie)

A brilliant mind

whose final wishes

included contributing to

this humble project.

http://skavookie.blogspot.com/

http://skavookie.blogspot.com/

The Complete Guide to JFugue

 6

Score of “Belle, bonne, sage” by Baude Cordier. From The Chantilly Manuscript.
The piece uses the red color to show notes that have a different duration

than the corresponding notes in black.

The Complete Guide to JFugue

 7

Table of Contents

A Tour of JFugue ... 17

Let’s Make Music! .. 19

Introducing “Hello, World,” JFugue Style .. 19

Using Chords and Chord Progressions .. 21

Creating Rhythms ... 21

Understanding Patterns .. 22

That’s No Moon… That’s an Awesome Music API! ... 23

Loading MIDI Files .. 23

Converting from One Music Format to Another .. 24

Developing Musical Tools ... 24

Measuring and Transforming Patterns ... 25

Microtones, ReplacementMaps, and Functions.. 26

The Magic of JFugue... 27

Transitioning from JFugue 4 to JFugue 5 ... 29

About JFugue 5 ... 29

Terminology Change: From JFugue MusicString to Staccato .. 30

Adjustment of Octave Range and Default Octaves .. 30

The Complete Guide to JFugue

 8

Elimination of Brackets around Note Numbers ... 31

Change in Expressing MIDI Commands in Music Strings .. 31

New Chords and Altered Chord Names ... 31

Elimination of Music Classes that Wrapped Basic Values ... 31

More and Different Methods in ParserListener ... 32

Updates to Rhythm API and Introduction of DefaultRhythmKit .. 32

New Intervals Class and Removal of IntervalNotation Class ... 32

Removal of PatternTransformer and PatternTool Classes ... 32

Update to Key Signature and New Time Signature .. 32

Staccato: Writing Music for JFugue ... 33

Introduction to Staccato .. 35

Introducing Staccato ... 35

Staccato by Example .. 36

Notes, Rests, and Chords ... 37

Basic Notes and Rests .. 37

Notes by Number .. 38

Notes by Name, and Percussion Note Names ... 38

Sharps, Flats, and Naturals .. 39

Internal Intervals ... 40

Chords... 40

Chord Inversions ... 41

Duration... 42

Triplets and Other Tuplets .. 44

Ties ... 45

Notes That Continue Until Explicitly Stopped ... 46

Note Dynamics: Note On and Note Off Velocities .. 47

Notes Played in Melody and in Harmony .. 47

Collected Notes: Notes that Share Durations or Dynamics .. 49

Summary ... 49

Voices and Layers ... 50

Voices ... 50

The Percussion Voice and Layers .. 51

Instruments .. 53

Tempo and Time Navigation ... 56

Tempo ... 56

Beat Navigation ... 57

Marker Navigation ... 58

Key Signatures, Time Signatures, Bar Lines, Markers, and Lyrics ... 59

Key Signature ... 59

Time Signature .. 60

The Complete Guide to JFugue

 9

Bar Lines ... 60

Markers ... 61

Lyrics ... 61

Staccato Style and Music Transcription .. 62

Staccato Style Recommendations .. 62

Transcribing Sheet Music to Staccato .. 63

Advanced Staccato ... 67

MIDI Effects ... 69

Pitch Wheel (aka Pitch Bend) ... 70

Channel Pressure ... 70

Polyphonic Pressure ... 70

Controller Events .. 71

System Exclusive Events .. 73

Microtones ... 74

Specifying Microtones in Staccato .. 74

Microtones and Musical Representation ... 75

Replacement Maps ... 76

Creating a Replacement Map ... 76

Eliminating the Need for Angle Brackets .. 77

Creating Your Own Replacement Map ... 79

Replace, Replace Again, Replace Again… Iterative Replacement 79

Functions ... 80

Preprocessor Functions vs. Subparser Functions .. 80

Preprocessor and Subparser Functions in JFugue .. 81

Creating a Preprocessor Function .. 82

Creating a Subparser Function ... 84

Subparsers May Populate Context ... 85

Instructions .. 86

Understanding Instructions ... 86

Creating Instructions ... 87

Using Patterns as Instructions .. 91

Creating Your Own Instructions .. 92

Dealing with Instructions that Start with the Same Words .. 92

Music Theory with the JFugue API ... 93

Introduction to Music Theory in JFugue .. 95

Notes ... 97

Staccato vs. the JFugue API .. 97

Default Octave on Notes ... 98

Default Duration on Notes... 99

“Note On” and “Note Off” Velocities .. 100

The Complete Guide to JFugue

 10

Note States: isRest, isPercussionNote ... 100

Melodic and Harmonic Notes .. 101

Start and End of a Tie ... 101

Position in Octave ... 101

String Arrays for Notes .. 101

Sorting Notes .. 102

Getting Strings and Other Values About Notes .. 103

Modifying Default Values for Notes .. 105

Diagnosing Notes .. 105

Chords and Chord Progressions ... 106

Creating Chords .. 106

The ChordMap .. 107

Creating a Chord with a Root and Intervals, or a Key .. 109

Methods on a Chord ... 109

Getting Human-Readable Chord Names .. 110

Creating Chord Progressions ... 110

Each Chord As, All Chords As, and Distribute.. 111

Intervals, Scales, and Keys ... 114

Intervals... 114

Scale ... 116

Key .. 116

Players and Parsers .. 117

Players .. 119

The Player ... 119

The Managed Player ... 120

The Realtime Player ... 122

Starting a Player with a Specific Sequencer or Synthesizer ... 125

Parsers and ParserListeners ... 127

A Common Pattern for Parsers and ParserListeners ... 127

Using Parsers and ParserListeners .. 128

Creating Musical Tools with ParserListener ... 130

Chaining Multiple ParserListeners .. 132

Using the DiagnosticParserListener ... 133

MusicXML, LilyPond, and Other Parsers and ParserListeners .. 134

Temporal ParserListener-Parser ... 135

The Temporal ParserListener-Parser ... 136

Using Temporal PLP ... 136

Patterns and Rhythms; MIDI Data and Devices .. 139

Introduction to Patterns ... 141

Using Patterns to Construct Music ... 143

The Complete Guide to JFugue

 11

Patterns are Composed of Tokens ... 144

Adding to a Decorator to Each Note Token in a Pattern .. 145

Loading and Saving Patterns .. 146

Transforming and Measuring Musical Data Within Patterns .. 147

TrackTable: A Table of Patterns ... 149

Creating and Populating a Track Table .. 149

Managing Track Settings .. 152

Rhythms .. 153

Introduction to Rhythms .. 153

Layers ... 155

Getting Rhythms and Patterns .. 156

Length and Segments ... 156

Combining Rhythms .. 156

Alternate Layers .. 157

Z-Ordering of Layers ... 158

Working with MIDI Data... 159

Expectations When Translating MIDI to Staccato .. 159

Turning MIDI into a Pattern, and Vice Versa .. 160

Using JFugue with MIDI Devices .. 161

Why Communicate with External Devices? .. 161

Setting Up Communication with External Devices ... 161

Sending Music to a MIDI Device ... 162

Troubleshooting Your Connections .. 164

Extras and Examples .. 165

A Quartet of Demonstrations ... 167

J. S. Bach’s Crab Canon with Tokens and Pattern Reversal ... 167

Lindenmayer System Music with a Replacement Map ... 169

Music Quiz with Chords, MIDI Device Input, and a Custom ParserListener 171

Virtual Instrument with Realtime Player and Notes from Intervals 174

Tests, Demos, and Examples in the Source Code Distribution .. 180

src/main... 180

src/test... 180

src/manualtest ... 181

src/demo ... 181

src/examples ... 181

Building and Testing JFugue ... 182

Building JFugue .. 182

Testing JFugue ... 183

Short JFugue Programs .. 185

"Hello, World" in JFugue ... 185

The Complete Guide to JFugue

 12

Playing multiple voices, multiple instruments, rests, chords, and durations 186

Introduction to Patterns ... 186

Introduction to Patterns, Part 2 ... 186

Introduction to Chord Progressions .. 187

Advanced Chord Progressions ... 187

Twelve-Bar Blues in Two Lines of Code ... 188

Introduction to Rhythms .. 189

Advanced Rhythms ... 189

All That, in One Line of Code? .. 190

See the Contents of a MIDI File in Human-Readable and Machine-Parseable Staccato
Format ... 190

Connecting Any Parser to Any ParserListener ... 191

Create a Listener to Find Out About Music ... 191

Play Music in Realtime .. 192

Anticipate Musical Events Before They Occur.. 193

Use "Replacement Maps" to Create Carnatic Music .. 194

Use "Replacement Maps" to Play Solfege .. 194

Use "Replacement Maps" to Generate Fractal Music .. 195

Conclusion ... 197

Setting Up JFugue ... 199

Downloading JFugue .. 199

Running a Test Program ... 200

Using JFugue from an Integrated Development Environment.. 200

Using MIDI Soundbanks ... 201

Image Credits .. 203

The Complete Guide to JFugue

 13

Tables & Figures

Tables

Table 1. MIDI note values. Middle-C (C in the 5th octave; MIDI note value 60) is
marked in green on the left side of the table ... 38

Table 2. Chord provided by JFugue .. 42

Table 3. Durations that can be specified for a note ... 43

Table 4. Predefined percussion note values ... 52

Table 5. Predefined instrument values .. 54

Table 6. Predefined tempo values .. 57

Table 7. Controller values ... 72

Table 8. Combined controller constants. Integers can be assigned to these, and
JFugue will figure out the high and low bytes. .. 73

Table 9. MIDI note values. Middle-C is marked in green on the left side if the
table. ... 98

Table 10. Chords provided by JFugue .. 108

Table 11. ParserListener events and the fire methods that call them 129

Table 12. Parser and ParserListener implementions in JFugue distribution 134

Table 13. DefaultRhythmKit entries .. 155

Table 14. Build targets in build.xml ... 183

The Complete Guide to JFugue

 14

Figures

Figure 1. Chord inversions of C Major: no inversion, first inversion, and second
inversion ... 41

Figure 2. Two triplets (also known as 3-tuplets) of quarter notes. Notice how each
triplet has the same duration of the half note in the bass staff. 44

Figure 3. Tying two notes across a measure .. 45

Figure 4. Tying two notes to achieve a combined duration 45

Figure 5. Examples of ties in a Staccato string. The string for this sequence of
notes is G5q B5q G5q C6q- | C6-w- | C6-q B5q A5q G5q 46

Figure 6. Three notes in melody; the Staccato string is C4q E4q G4q 48

Figure 7. Three notes in harmony; the Staccato string is C4q+E4q+G4q 48

Figure 8. A harmony and a melody played together; the Staccato string is
C4h+E4q_G4q .. 48

Figure 9. Sharing durations across notes: (C E G)q ... 49

Figure 10. Sharing durations across notes in harmony and mixing additional
dynamics: (C+E+G)4/0.25a60d15... 49

Figure 11. This C-flat Major key signature can be represented as KEY:Cbmaj or
KEY:bbbbbbb .. 60

Figure 12. Sheet music for a portion of “Spring” ... 64

Figure 13. Blues progression .. 111

Figure 14. Sheet music for “Twinkle Twinkle Little Star” 142

Figure 15. The Virtual Instrument.. 175

The Complete Guide to JFugue

 15

Forward to the Second Edition

Thank you for your interest in JFugue, and thank you for supporting the
development of JFugue by purchasing this book. Through your

generosity, you have helped encourage the further development of a
freely-available open-source software library that so many people have
found useful, easy, and enjoyable.

I first became interested in programming music when, as a young and
aspiring software developer, I discovered the musical capabilities of my

Commodore® 128. I particularly enjoyed the Basic 7.0 "play" command,
which let me program music in an easy and straightforward manner. I

have always missed the ability to program music so easily using more
recent programming languages. Eventually, I decided to create my own
library for sharing that joy that I had in my youth. JFugue makes it easy

for developers to express their musical ideas.

While fixing issues in the fourth major version of JFugue, I realized that

the code needed a rebirth. When I first wrote JFugue, I was a mid-level
developer and an inexperienced music theorist. Since then, I had grown

immensely in my profession as a developer, and I also vastly increased by
knowledge of music theory. I was also dogged by some insidious timing
bugs that should not have been as hard to fix as they were. I re-wrote the

code from the ground up. I also took the opportunity to introduce new
ideas, such as the use of intervals and the development of a fluent API

The Complete Guide to JFugue

 16

(where methods that would normally return void instead return this so

you can chain commands together: new ChordProgression().setRoot()

.getNotes();). There were also many ideas from the user community

that I wanted to incorporate, such as new capabilities in the Music String

and new ways to think about parsers. After re-writing the code, the
central core of this version of JFugue contains fewer classes and slightly

over half of the original code size (when measured in kilobytes of Java
files) and has made it easy to introduce new capabilities (e.g., intervals,
chord progressions, customizable chords) that work seamlessly together.

The new version of JFugue provides more correct functionality (e.g.,
converting MIDI files to JFugue, real-time parsers) and introduces an

independent music specification language based on the JFugue Music
Strings called Staccato.

It is my hope that JFugue will inspire other developers and encourage
people of all ages to experiment with the expressive power of music.
There are so many interesting musical things than one can create by

using programs to generate musical data interactively or algorithmically.
I love seeing what people invent using JFugue to help stretch the bounds

of imagination!

The Complete Guide to JFugue

 17

Part 1

A Tour of JFugue

The Complete Guide to JFugue

 18

The Ricecar a 6, a six-part fugue from Johann Sebastian Bach’s
“The Musical Offering” (BWV 1079), written in Bach’s hand.

The Complete Guide to JFugue

 19

1.1

Let’s Make Music!

Welcome to JFugue! Let’s jump right into the code and start making
music. Part 1 of this guide will introduce you to several examples of

programming music with JFugue. Later parts of this guide provide in-
depth details about the library. If you need help setting up your

development environment, please see Appendix: Setting Up JFugue.

Introducing “Hello, World,” JFugue Style

Let’s start by writing one of the simplest JFugue programs possible. The

following example plays a scale of notes (C through B).

import org.jfugue.player.Player;

public class HelloWorld {

 public static void main(String[] args) {

 Player player = new Player();

 player.play("C D E F G A B");

 }

}

Turn on your speakers or put on your headphones, run the program,

and let the music play!

The Complete Guide to JFugue

 20

The Player class is responsible for playing music that you enter as
strings. Those strings are written in a format called Staccato, which had

its origins in the JFugue project but is now an open standard and may
be used by any music software. Staccato is designed to be easy for people

to write and read. There are other music formats, such as MusicXML and
ABC Notation, some of which focus on detailed, high-fidelity
representation of music notation, but Staccato is geared specifically

towards ease of writing and reading by everyday people.

One of the ways that Staccato accomplishes this is by making several
common-sense assumptions. For example, you may notice that you did
not indicate a duration or octave for any of the notes, nor a tempo for the

music. Staccato used default values (fourth octave, quarter-note
duration, 120 beats per minute) that make it easy for you to play music

without being overwhelmed with the details. Of course, when you are
ready to delve into the details, there are plenty of details to learn; yes,
you can set your own durations, octaves, or tempo. There are also some

fun and powerful things you can do in Staccato, but let’s get the basics
down first.

This next example is a step up from “Hello, World.” This example plays
the first few notes of one musical line from the crab canon in Johann

Sebastian Bach’s “The Musical Offering” (BWV 1079). In this example,

the numbers you see (5 and 6) are octaves, h and q represent half and

quarter durations, and you can probably figure out which notes are flats
and sharps. More details about octaves, durations, and accidentals are
provided in Section 2.2, Notes, Rests, and Chords.

player.play("D5h E5h A5h Bb5h C#5h Rq A5q A5q Ab5h G5q G5q");

Suppose you want to play your notes in an instrument besides the piano.

Since this is a crab canon, there is a second musical line that is the
reverse of the first, and the two lines are played in harmony. In the

following example, you can see the use of voices (V) (also known as tracks

or channels) and instruments (I), and now some eighth notes (i next to

a note, since ‘e’ is already used as a note). Let’s also add some bar lines

(|) to make the music easier to read, and slow down the tempo (T) from

the default of 120 BPM.

player.play("T100 V0 I[Violin] D5h E5h | A5h Bb5h | " +

 "C#5h Rq A5q | A5q Ab5h | G5q G5q" +

 "V1 I[Flute] D5q F5q A5q D6q | " +

 "C#6i D6i E6i F6i G6i F6i E6i D6i | " +

 "E6i A5i E6i G6i F6i E6i D6i C#6i | " +

 "B5i C#6i D6i F6i E6i D6i C#6i B5i | A5i Bb5i");

The Complete Guide to JFugue

 21

There are other things you can do with notes—ties, triplets, dynamics
(on/off velocities), melodies and harmonies—which are all described in

detail in Section 2.2, Notes, Rests, and Chords.

Using Chords and Chord Progressions

It is easy to play chords with JFugue.

player.play("C3MAJq F3MAJq G3MAJq C3MAJq");

And, of course, chords can also be played in different voices, with

different instruments, at different octaves, and for different durations,
just as notes can.

Suppose you know something about music theory and would really like
to play a I-IV-V-I chord progression, which is what the above example
actually is, but you would rather think of it as I-IV-V-I. Meet the

ChordProgression class:

Player player = new Player();

ChordProgression cp = new ChordProgression("I IV V I");

player.play(cp);

This plays the same thing!

In the example above, "I IV V I" is not a Staccato string; instead, it is a

string passed to the ChordProgression constructor. You can get the
Staccato representation of this class by using the following method:

Pattern pattern = cp.getPattern();

This returns the Staccato representation "C3MAJ F3MAJ G3MAJ C3MAJ" –

four chords using the default C in the 3rd octave as the root.

Chords can also be played with different root notes. The following two
lines play the same music – a I-IV-V-I progression with a root of B-flat.

1. player.play(cp.setKey("Bb")); // using cp from above

2. player.play("Bb3MAJq Eb4MAJq F4MAJq Bb3MAJq");

Creating Rhythms

Are you ready to really get down and groove? JFugue makes it easy to
create rhythms. In this example, each of the letters is associated with a
percussion sound – drums, cymbals, hand claps, and so on.

Rhythm rhythm = new Rhythm()

 .addLayer("O..oO...O..oOO..")

 .addLayer("..S...S...S...S.")

 .addLayer("````````````````")

The Complete Guide to JFugue

 22

 .addLayer("...............+");

Player player = new Player();

player.play(rhythm.getPattern().repeat(4));

This seven-line program is probably the coolest piece of code you’ll write
today – have a listen! And you could actually write this as one long line of

code, if you were really ambitious:

new Player().play(new Rhythm("O..oO...O..oOO..",

 "..S...S...S...S.","````````````````","...............+")

 .getPattern().repeat(4));

Most things in JFugue that produce music implement PatternProducer,

and the play() method can play music from any PatternProducer. Let’s

see this in action by combining this rhythm with a chord progression.

Use the seven-line rhythm example, but remove the player.play line and

replace it with the following two lines:

ChordProgression cp = new ChordProgression("I IV V I");

player.play(cp.setKey("AbMIN"), rhythm.getPattern().repeat(4));

Understanding Patterns

As you worked through these examples, you started to see uses of the

Pattern class, which is essentially a wrapper around a Staccato string.

Patterns serve as one of the foundational objects in JFugue, and most

classes that generate musical instructions implement PatternProducer

and override the getPattern() method. The Player.play() method takes

one or more implementations of PatternProducer and asks each

PatternProducer for its pattern.

Patterns can be split into Tokens, and you can write programs that

examine or recombine tokens in musically interesting ways. For example,
you may be adventurous enough to create an algorithm that will create a
Markov model of notes read in from a MIDI file, or create a way to reverse

a Pattern while maintaining the correct Voice and Instrument settings

for the reversed notes.

The Complete Guide to JFugue

 23

1.2

That’s No Moon…
That’s an Awesome Music API!

In the previous section, you saw how easy it is to create and manipulate
music. Now, witness the power of this fully armed and operational music

API.

Let’s pick up right where we left off in Part 1.1

Loading MIDI Files

Suppose you have a MIDI file for your favorite song. You can convert it
into Staccato quite easily:

Pattern pattern = MidiFileManager.loadPatternFromMidi(new File

("my_favorite.mid");

You can now print the Pattern to see the notes, or pass the Pattern to

player.play(). And now knowing that you can transform Patterns, you

can have a lot of fun with your favorite music. What would your favorite

song sound like backwards? Or with a portion of the song extracted and
used as the theme in a fugue?

The Complete Guide to JFugue

 24

Converting from One Music Format to Another

You have a MIDI file for your favorite song and you need to convert that

file to MusicXML. No problem:

MidiParser parser = new MidiParser();

MusicXmlParserListener listener = new MusicXmlParserListener();

parser.addParserListener(listener);

parser.parse(MidiSystem.getSequence(new File(filename)));

Element musicXmlElement = listener.getRootElement();

Done.

JFugue uses a simple yet powerful Parser/Listener paradigm that allows

any ParserListener (in the past, also called a Renderer) to listen to

musical events sent from any Parser. You can easily create your own

instances of Parser and ParserListener and use them with the existing

instances of Parser and ParserListener in JFugue. This means that you

can*:

 Convert MIDI to a light show

 Take a song in ABC Notation and turn it into LilyPond sheet music

 Write a parser that converts spam email messages and turns your

electronic trash bin into beautiful musical odes (some imagination
required)

 Convert DNA sequences to MIDI

The possibilities are endless. Have fun and create great stuff!

(* - Each example includes at least one parser or parser listener that is
left as an exercise for you, dear reader.)

Developing Musical Tools

The same Parser/Listener paradigm that makes it easy to convert
between two musical formats can also be used to create musical analysis
and manipulation tools with little effort.

For example, suppose you have a piece of music (in any format) and you
want to know all of the instruments that are used in the song. To do this,

create a ParserListener that does something when instrument events

are parsed. (You can do this by extending ParserListenerAdapter, which

provides empty implementations for all of the events that a

ParserListener receives.)

http://en.wikipedia.org/wiki/Musicxml
http://en.wikipedia.org/wiki/Abc_notation
http://en.wikipedia.org/wiki/Lilypond
http://en.wikipedia.org/wiki/DNA_music

The Complete Guide to JFugue

 25

public class InstrumentListener extends ParserListenerAdapter {

 private List<String> instruments = new ArrayList<String>();

 @Override

 public void onInstrumentParsed(byte instrument) {

 instruments.add(MidiDictionary.INSTRUMENT_BYTE_TO_STRING

 .get(instrument));

 }

 public List<String> getInstruments() {

 return this.instruments;

 }

}

Now you can use this with any parser (e.g., MIDI, Staccato, MusicXML):

MidiParser parser = new MidiParser();

InstrumentListener listener = new InstrumentListener();

parser.addParserListener(listener);

parser.parse(MidiSystem.getSequence(new File(filename)));

List<String> instruments = listener.getInstruments();

In only a few lines of code, you now have the complete capability to find

all of the instruments used in a musical piece. You can image using the
same technique to count how many times a musician uses the same

three-note sequences. Or, you could create a tool to calculate the
Parsons Code for a piece of music to index its melodic contour.

Measuring and Transforming Patterns

Recall that a pattern is JFugue’s way of representing a fundamental unit

of musical information. Patterns are written in Staccato. You can
measure and transform patterns in two ways. The first is to use a

ParserListener, similar to the previous example that returns a list of

instruments on any piece of music. If you have a Pattern, you could pass

the InstrumentListener directly to pattern.measure() and get your

answer easily. If you have multiple changes that you want to make to a
pattern – change all Piano instruments to Flute, change all half notes to

whole notes, and more – you can either put those all into a single

ParserListener, or you can chain ParserListeners together, which is

nice because it ensures that each ParserListener is responsible for only

one type of change.

The second way is to split the pattern into tokens. Each note, instrument
change, MIDI command, and so on is represented by a single token, and
tokens know what kind of musical instruction they represent. Here is a

second way of finding all of the instruments in a pattern:

http://en.wikipedia.org/wiki/Parsons_code

The Complete Guide to JFugue

 26

Pattern pattern = new Pattern("V0 I[Piano] A B V1 I[Flute] D E");

List<Token> tokens = pattern.getTokens();

for (Token token : tokens) {

 if (token.getType() == TokenType.INSTRUMENT) {

 System.out.println(token);

 }

}

Microtones, ReplacementMaps, and Functions

Music is not limited to the 12-tone octave of Western tradition. There are
“notes between the notes” that are used by music from non-Western

cultures. Carnatic music is an excellent example. JFugue lets you
express microtones quite easily. As long as you know the frequency, in

Hertz, of the tone you would like to generate, you can use Staccato’s ‘m’

command followed by the frequency, then followed by any other markup

you would use with a traditional note (e.g., duration and note dynamics).

For example, m440.0w would be a whole-duration standard Western ‘A’

note. Behind the scenes, JFugue converts the microtone to a series of
pitch wheel and note events that are necessary for MIDI to render the

correct sound.

But if you’re interested in something like Carnatic music, you probably

don’t want to write your music as a bunch of frequencies. Instead of

m275.6220, you would rather think of this as R1. JFugue has you covered.

Using a ReplacementMap, you can tell JFugue how you would like to

specify your music, and what Staccato string should be used to
represent each of the things you’d like to say. JFugue even comes with a

CarnaticReplacementMap that takes care of S, R1, R2, P, D1, and so on. If

also comes with a SolfegeReplacementMap that lets you specify music as

DO, RE, MI instead of C, D, E – which is great for children who are learning

music.

Now what if your music has certain effects – trills, tremolos, slides – do

you have to manually enter each note into your Staccato string? Not
quite! JFugue lets you specify a function directly in the Staccato string,

so you can say something like "A B C :TRILL(Dq) E F". You’ll need to

define the function (actually, TrillFunction is provided in JFugue), but

your Staccato string remains nicely readable.

You will find a lot of cool features in JFugue that have been the result of
a lot of thinking about how to make music programming as easy and as

enjoyable as possible. Enjoy this fully armed and operational API!

The Complete Guide to JFugue

 27

1.3

The Magic of JFugue

Now that you have a taste for JFugue’s capabilities, I would like to take a

step back and reflect on The Magic of JFugue – what it is about JFugue

makes it fun and exciting to program music. In particular, there are four
capabilities that I believe are unique to JFugue and that deliver a

quintessentially different music programming library than other
packages I have seen. I offer these thoughts in the hope that they inspire

your own exploration of computational magic through music – and
musical magic through computation.

The first and most obvious bit of magic is ease of use – specifically, a
combination of Staccato strings to represent music in a human-readable
format, and the simplicity of writing a musical program. The ability to

say player.play("C D E F G A B"); and just have that work is

extremely satisfying and extremely simple. Programming music could not
get any simpler than this. And the fact that this extends to let you say
player.play("T[Adagio] V0 I[Piano] CmajW V1 I[Flute] C5q E5q C6q

G5q"); – a bit more complex, but still simple – is also impressive.

The second piece of magic is that JFugue calls musical things Patterns,

and anything in JFugue (or your own code!) that can produce playable

music is a PatternProducer, and that Patterns can be manipulated in

The Complete Guide to JFugue

 28

music-centric ways that Java Strings cannot. This ensures that any code
that generates JFugue music can do so in a slightly more interesting way

than just passing Strings around.

The third piece of magic is in the architectural underpinnings of JFugue,

and here the piece of magic has two subparts: the event-based musical
event architecture, and the architecture of the Staccato parser itself.

With the architecture centered on musical events, you can use JFugue to
convert from any music format to any music format. Staccato-to-MIDI
happens to be the default. But you can also use JFugue to convert from

MusicXML to Lilypond, or MIDI to MusicXML, or MusicXML to Staccato –

any combination of Parser and ParserListener. And the architecture of

the Staccato parser lets you create your own musical tokens that you
can inject into a Staccato string, so you can create a

CarnaticTokenSubparser and pass in tokens of Indian music, and have

those tokens converted to microtone notations. Oh, and then you can
still have that music played as MIDI, or exported to MusicXML or
Lilypond. And you can represent your new Carnatic tokens in a Pattern

that can be manipulated in ways that make musical sense. Wow!

The fourth piece of magic is that once the basic things become easy to
express, we can have lots of fun doing more unique things that are not

found in your typical music API. JFugue’s Rhythm class is the perfect

example of this: you can create a hard rock beat in four lines of creative
code. You can add new chords to JFugue’s chord map, which defines a

set of intervals for each chord, and have them immediately available in

your Staccato strings. You can get all of the Chords in a

ChordProgression and have each of them played like four rapid-fire

eighth notes. I didn’t intend for ReplacementMapProcessor to have the

ability to create musical fractals, but it can be used that way, as you’ll
see. The API encourages and facilitates creative interaction with music
and programming.

But wait, there’s more! I’ll even throw two extra pieces of magic. The first

is that all of this is built on a solid bed of music theory. Chords and
Scales are defined by Intervals, ChordIntervals contain Chords and
Chords contain Notes, and all of this works seamlessly together. The

second extra bit of magic is that the chaining syntax of the JFugue API
makes all of these things very expressive. It’s easy to fluidly chain pieces
together in a single line without the need for temporary variables. For

example, if you want to find the notes to the second chord of a I-II-IV

progression when played with a root of B-flat, you say: Notes[] notes =
new ChordProgression("I II IV").setRoot("Bb").getChords()[1]

.getNotes();

And now, let’s get on with the music programming!

The Complete Guide to JFugue

 29

1.4

Transitioning from JFugue 4 to JFugue 5

If you are already familiar with earlier versions of JFugue, particularly
JFugue v4.0.3, you may be wondering how this version is different, and

what you need to do to adjust between the two versions. This chapter
provides the highlights.

About JFugue 5

JFugue 5 is a total, from-the-ground-up rewrite of JFugue. Many of the
original concepts of JFugue persist in JFugue 5 and many classes

maintain the same names (e.g., Player, Pattern, ParserListener, Note,

Rhythm), but the methods of these classes are different, and the classes

have been reorganized into a new package structure. If you are using an

integrated development environment (IDE) such as Eclipse or NetBeans,
simply “organizing imports” in your existing code should resolve the

correct package names for the basic classes like Player (which is in

org.jfugue.player) and Pattern (which is in org.jfugue.pattern).

Some classes from previous versions of JFugue has been renamed in this

version; for example, the former DeviceThatWillReceiveMidi is now

simply MidiReceiver. Expect some classes with the same names as their

JFugue 4 counterparts, like Note and Rhythm, to have substantial

The Complete Guide to JFugue

 30

differences in the methods they provide. There is also a lot of new and
exciting functionality in JFugue 5, particularly around music theory, so

please explore this guide and the API documentation to learn more!

Terminology Change: From JFugue MusicString to Staccato

What had been called the JFugue MusicString in the past is now gaining

its own traction and has a new name: Staccato. The intention is that,
while Staccato had its origin as JFugue’s MusicString, it has earned its
own wings and is a music format that can be used on projects outside of

JFugue. And now, JFugue 5 is a reference implementation for parsing
Staccato music.

Adjustment of Octave Range and Default Octaves

In the past, the MusicString allowed octaves in a range from -1 to 9; for

example, C-1 would be a C-note in the lowest octave. The octaves have

changed: the allowable range is now 0 through 10, meaning that the

lowest note in Staccato is C0 and the highest note is G10. This is now

consistent with MIDI note numbers.

This has the effect of making music sound an octave higher. If you

previously composed a song with C5, you’ll notice that C5 in JFugue 5

sounds one octave higher than C5 in JFugue 4. The new version is more

consistent with the rest of the musical world; in particular, it ensures

that A5, the A just above Middle-C, is the same as 440Hz, which is

verified by this simple program (also in the code as A440Test.java):

player.play("A5 m440"); // Make sure that A5 sounds like 440Hz

Eliminating the -1 octave also removes a parsing ambiguity when

determining whether a note was in the -1 octave (e.g., C-1) or was the

end of a tie (e.g., C-w).

The default octave – which allows one to say C and assume they would

hear Middle-C – is 5. The default octave for a chord, such as Cmaj, had

been 3 in past versions of JFugue but is now 4, since that is the typical

octave for notes in the bass clef (just below Middle-C). The defaults for all
note settings, which includes octave, duration, and on/off velocity, are

now adjustable with the DefaultNoteSettingsManager.

Despite the changes you may have to make to your MusicStrings (now
Staccato strings), hopefully your headache will be eased with the
understanding that the new octave settings are more correct than the

previous ones.

The Complete Guide to JFugue

 31

Elimination of Brackets around Note Numbers

If you have programmed music using note numbers, such as [74]w,

please remove the brackets from the note numbers, giving 74w. Brackets

should be used in cases where the contents of the brackets is a string

representation of a value that needs to be looked up (e.g., I[Piano],

T[Allegro]). This includes percussive instruments in the 10th MIDI

channel, so if you have V9 [Bass_Drum]w, that is a legitimate use of the

bracket notation and those brackets must remain.

Change in Expressing MIDI Commands in Music Strings

In previous versions of JFugue, MIDI commands such as Pitch Wheel or

Controller Events were specified by starting a token with a special

character, such as & or ^. Those characters were hard to remember and

did not provide for readability of the music string; in addition, there are
only so many special characters that one may type, so they limited the
number of “meta-musical expressions” (instructions about the music)

that could be specified in a Music String.

In JFugue 5, MIDI commands are invoked through the Function system.
JFugue 5’s Functions allow an end-user to name a function that accepts
a set of parameters in parentheses. JFugue pre-defines functions for

Pitch Wheel, Controller Events, and other MIDI capabilities. Now, these

look like :PitchWheel(x,y) or :PW(x,y), or :Controller(x,y) or

:CON(x,y). The MIDI commands are still interpreted by the Parser and

come through a ParserListener in specific methods, such as

onPitchWheelParsed and onControllerEventParsed.

New Chords and Altered Chord Names

Previously, some complicated chords (e.g., Dominant 7th 6/11) had
names like DOM7<6>11. Now, the percent character is used in those
chord names. In addition, JFugue 5 provides new chords, as well as a

mechanism for you to add chords with one line of code.

Elimination of Music Classes that Wrapped Basic Values

Previous versions of JFugue had classed like Instrument and Tempo that

did little more than wrap a value representing an instrument or a tempo.
Many of these classes do not exist in JFugue 5; it is sufficient to share

information about an instrument by simply passing along a byte value

representing an instrument, since the former Instrument class provided

little else. This also impacts the methods in ParserListener, as you will

see in the next section. For constants representing instrument names

(e.g, PIANO = 0), see MidiDictionary.

The Complete Guide to JFugue

 32

More and Different Methods in ParserListener

ParserListener is probably the most commonly-used interface in

JFugue. In JFugue 5, the methods in ParserListener are significantly

different from previous versions. First, most of the methods start with the

word ‘on’ (e.g., onTempoChanged, onNoteParsed). Parameters for methods

like onInstrumentParsed on onControllerEventParsed are now the byte

values representing the changed or parsed values rather than classes
that wrap these values, as discussed in the previous section. New

methods have been added to support new functionality (e.g.,

onLyricParsed, onMarkerParsed). Two new workflow methods,

beforeParsingStarts and afterParsingFinished, let your

implementation of a ParserListener know when to do important set-up

and tear-down activities.

Updates to Rhythm API and Introduction of DefaultRhythmKit

The Rhythm class is simpler to use in JFugue 5. Substitutions, which

allow you to say what percussion sound is represented by what

character, is now handled by a simple Map<Character, String>, and a

default map called the DefaultRhythmKit comes pre-loaded with

commonly-used characters and their corresponding percussion sounds.

At the same time that the Rhythm class has been made simpler, it has

also been made more powerful, and it now features Z-ordering or layers
and a hierarchy of different types of “alternate” replacements, which

allow you to create a long-duration rhythm that has switch-ups at points

during the duration. Rhythm no longer supports chromatic notes.

New Intervals Class and Removal of IntervalNotation Class

Previous versions of JFugue had a class called IntervalNotation, which

was a separate notation style for specifying notes. That concept no longer

exists. JFugue 5 has a different class, Intervals, which is consistent

with intervals in music theory and can be used to create chords, scales,
keys, and melodies.

Removal of PatternTransformer and PatternTool Classes

JFugue 5 does not provide a PatternTransformer and PatternTool class.

However, you can still write code that transforms a pattern using a

ParserListener, and the Pattern class now has transform() and

measure() methods that take a ParserListener.

Update to Key Signature and New Time Signature

JFugue now has a time signature command, and an updated key

signature command (KEY: instead of K).

The Complete Guide to JFugue

 33

Part 2

Staccato:
Writing Music for JFugue

The Complete Guide to JFugue

 34

Front page of the autograph for J. S. Bach’s
“Sonata for single violin #1 in G minor” (BWV 1001)

The Complete Guide to JFugue

 35

2.1

Introduction to Staccato

In this chapter, you will learn most of what you need to know to start
creating music with JFugue. Specifically, you will learn about the

features of Staccato, which is the format used to specify music in strings.
Staccato lets you to create music with notes of varying octaves,

durations, and instruments. You’ll also learn all about chords, tuplets,
tempo, controllers, key signatures, and more. Finally, you’ll learn how to
transcribe sheet music into a Staccato string.

Introducing Staccato

Staccato is the name of the format that JFugue uses to specify music in
strings. Staccato originated as the MusicString that you may be familiar

with from past incarnations of JFugue. As a specific format now with its
own name and separate existence, Staccato is a new standard in musical
formats and is intended for use in other projects aside from JFugue.

Perhaps JFugue is the reference implementation of Staccato.

Staccato is optimized for use by people who write, read, and create music
in software programs. There are other music formats that are better for
other tasks. For example, MusicXML, the de facto music representation

standard for sharing musical data across applications, provides an
extremely rich set of tags for specifying intricacies in music lithography

The Complete Guide to JFugue

 36

and style. The LilyPond format is used for music engraving. MIDI is a
format for communicating music among musical devices, and is not

intended to be user-facing. JFugue provides tools for converting music
among these formats.

Staccato is one of the magical things about JFugue. It is the reason that
JFugue is easy to use and allows a programmer to create music quickly.

Staccato is designed to be easy to learn, easy to write, and easy to read.

The following example is the simplest demonstration of Staccato. This

example plays a C note using the default octave and duration.

 Player player = new Player();

 player.play("C");

Staccato is not case-sensitive. You will see a consistent style of upper-

and lowercase used in the examples below. While this style is designed to
make Staccato music as readable as possible, adherence to this

particular style is not required for JFugue to properly parse the string.
Additional guidelines for Staccato style are presented towards the end of
this chapter.

In the following sections, you will learn how to represent music using
Staccato.

Staccato by Example

Here are some examples of MusicStrings:

 Player player = new Player();

 player.play("C");

 player.play("C7h");

 player.play("C5maj7w");

 player.play("G5h+B5h+C6q_D6q");

 player.play("G5q G5q F5q E5q D5h");

 player.play("T[Allegro] V0 I0 G6q A5q V1 A5q G6q");

 player.play("V0 Cmajw V1 I[Flute] G4q E4q C4q E4q");

 player.play("T120 V0 I[Piano] G5q G5q V9 [Hand_Clap]q Rq");

Each set of characters separated on either side by one or more spaces is
called a token. A token represents a note, chord, or rest; an instrument
change; a voice or layer change; a tempo indicator; a controller event; the

definition of a constant; and more, as described in more detail in this
chapter. In the example above, the first four examples each contain one

token, and the last four examples each contain eight tokens.

The Complete Guide to JFugue

 37

2.2

Notes, Rests, and Chords

You can’t have music without notes! Let’s get right into it – there is a lot
to cover, and notes are the most complex of the musical data objects in

JFugue. This chapter starts from the most basic cases and moves on to
more complex constructs. Two tips for reading this chapter: 1) this will

be a lot more fun if you try some of the examples as you read; 2) you do
not need to remember everything in here to get started with making
beautiful music.

Basic Notes and Rests

Specifying a note in Staccato is intuitive. In the simplest case, you simply

provide the name of the tone: C, D, E, F, G, A, or B. By default, these

notes are played in the fourth octave and for a quarter duration. Sharp

notes are indicated with a hash mark #, and flat notes are indicated with

a b; both of these follow the root, so F# or Bb would indicate an F-sharp

or a B-flat. Use R to represent a rest, which also defaults to a quarter

duration.

A melody of notes consists of notes separated by spaces, as in this
example:

player.play("C C E E G G E"); // Twinkle, twinkle little star

The Complete Guide to JFugue

 38

To specify an octave for a note, append a number from 0 to 10 to the

note. C4 is Middle-C. MIDI supports 128 notes, from C in the zeroth

octave (C0) to G in the tenth octave (G10).

Notes by Number

Notes can be specified using a note number instead of a note letter plus

octave. The note number corresponds to the MIDI number that
represents the note. For example, MIDI note 60 is Middle-C. To specify a
note using its note number, simply use the number in the place of the

note letter and octave:

player.play("60"); // Plays Middle-C, same as player.play("C")

MIDI note values are shown in Table 1.

Octave C C# D Eb E F F# G G# A Bb B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

Table 1. MIDI note values. Middle-C (C in the 5th octave; MIDI note value 60)

is marked in green on the left side of the table

Specifying a note numerically results in a less readable Staccato string,

but the ability to specify notes numerically can be useful if you are
calculating note values in your application and do not want to convert

the note values to letters – although the JFugue API does provide
methods that convert note values to letters, as explained in Section 4.2.

In previous versions of JFugue, note numbers were placed in square
brackets. Square brackets are no longer used to indicate notes by

number. They are still used to indicate a note by name, as described
next.

Notes by Name, and Percussion Note Names

Wherever you can use a numeric value in Staccato, you can also use a
string surrounded by square brackets, and the name will be looked up in
a map maintained by the Staccato parser. For notes, this is most

commonly used to refer to percussion instruments.

The Complete Guide to JFugue

 39

MIDI has 16 channels, and the tenth channel is set aside specifically to
represent percussion sounds. The percussion sounds played by the tenth

channel are not chromatic (i.e., they do not have a range of tones). To
make the sounds, the percussion channel uses the same note values

that are used for chromatic notes in other channels. This is why you see
images of percussion instruments above the piano keys of many MIDI
keyboards – if you are in the percussion channel, pressing those keys

will make the percussion sound indicated by the image instead of the
regular tone of the key.

Whereas 60 is a Middle-C in most channels, in the percussion channel
60 plays a “hi bongo” drum.

When writing music for the percussion channel, it makes more sense to
write the music using the intended percussion instrument. Instead of

writing the following line:

player.play("V9 60q"); // V9 is the 10th channel

It makes more sense to write:

player.play("V[Percussion] [HI_BONGO]q");

The Staccato parser will look up the value of HI_BONGO, find it to have a

value of 60, and will play the corresponding drum sound. This example

skips ahead a bit to introduce the Voice (i.e., channel) command while
also demonstrating that voices can also be specified by a name in square
brackets.

Sharps, Flats, and Naturals

You can indicate that a note is sharp or flat by using the # character to

represent a sharp, and the b character to represent a flat. Place the # or b

character immediately after the note name; for example, a B-flat would

be represented as Bb.

Staccato also supports double-sharps and double-flats, which are

indicated by using ## and bb, respectively.

If you use a key signature in your music string (see Section 2.6), you can

indicate a natural note by using the n character after the note. For

example, a B-natural would be represented as Bn. If you use a key

signature and do not mark a note as a natural, the note value will be
automatically changed based on the key signature. For example, if you
specified an F-major key signature, a B note would be played like a B-flat

automatically.

The Complete Guide to JFugue

 40

Internal Intervals

Later, you will learn that Intervals are one of the foundational classes in

JFugue. They make it easy to specify chords – for example, a major chord

is represented by a 1 3 5 interval, where 1 is the root. A minor chord

would be represented by the interval 1 b3 5, in which the second note is

a flat third.

An internal interval lets you specify an interval relative to a specific note.

To do this, use the single-quote character, followed by an interval value.

For example, we know that C will give a C note. Well, C'b3, which is the

b3 interval of C, is E-flat. In fact, anywhere you can say Eb, you can

equivalently say C'b3 if you cared to – JFugue considers them to be the

same note. Since octaves modify the note itself, if you are using an octave

number, place it next to the note and before the single-quote: C5'b3.

Chords

A chord is a combination of notes played simultaneously (i.e., in
harmony). Chords have a root note and a phrase that expresses the

intervals for the harmonic notes. For example, a C-Major chord has a
root note of C and is a major triad. To specify a chord in Staccato, you
first provide the root note (including sharps, flats, and octaves, or

expressing the note by number or name) and, immediately following,
specify the intervals using the name of the chord. For example, to play a

C-Major chord, you would use the following call:

player.play("Cmaj"); // Plays a C Major chord

JFugue provides many chord names by default. You may also add new

chord names and intervals; this capability is explored in more detail in
Section 4.3. The chord names that JFugue provides are shown in Table

2. (As a rule of thumb, where you might expect to see a slash in the
chord name (e.g., “Minor 6/9”), JFugue places a percent sign; otherwise,
the slash would be ambiguous with the use of the slash to indicate a

decimal duration, as you will learn about shortly.)

To specify an octave with a chord, follow the chord root with the octave

number. For example, an E-flat, 6th octave, major chord would be Eb6maj.

An easy way to remember where to place the octave is that the octave
describes the root note in more detail, so it should be next to the root. If
a number follows the chord name, then the number is associated with

the chord itself: for example, Cmaj7 describes a C-Major seventh chord,

not a C-Major chord in the seventh octave. The default octave for a chord
is the 4th octave, which is slightly lower than the default octave for a note
(5th octave).

The Complete Guide to JFugue

 41

The rest of this chapter introduces durations, triplets, ties, and
dynamics; all of these items apply to chords as well as notes. In later

sections, JFugue’s support for music theory, including additional details

about chords and an introduction of the ChordProgression and Interval

classes, provide much more detail about chords. This chapter is limited
to introducing the ability to specify chords in a Staccato string.

Chord Inversions

Chords have a root note, and in most cases the root is also the bass (or
lowest) tone in the chord. A chord inversion is a rearrangement of the

chord that makes a different note the bass. For example, a C Major chord
in the 3rd octave consists of the notes C3, E3, and G3; the first inversion
of that chord puts E3 in the bass, and the chord is played as E3 G3 C4.

See Figure 1.

Figure 1. Chord inversions of C Major: no inversion,

first inversion, and second inversion

Staccato provides two ways to express chord inversions. In both cases,

the inversion indicator immediately follows the chord name. First, you

may use the caret symbol (^) as many times as inversions. For example,

a first inversion would use a single caret; a second inversion would use
two. This call plays the three inversions of C-Major:

player.play("C3maj C3maj^ C3maj^^"); // Inversions of C-Major

Second, you may use a single caret followed by the new bass of the
chord. The following call plays the same music as the previous example:

player.play("C3maj C3maj^E C3maj^G"); // Inversions of C-Major

When you see sheet music that places the chord names over the staff

and you see a chord with a slash followed by another letter (for example,
“C/E”), that is an inversion: in this case, you are being asked to play a C-

Major chord with E as the bass note. In Staccato, this is Cmaj^E.

Common Name JFugue Name Intervals

Major Chords

Major MAJ 1 3 5

Major 6th MAJ6 1 3 5 6

Major 7th MAJ7 1 3 5 7

Major 9th MAJ9 1 3 5 7 9

Added 9th ADD9 1 3 5 9

The Complete Guide to JFugue

 42

6/9 MAJ6%9 1 3 5 6 9

7/6 MAJ7%6 1 3 5 6 7

Major 13th MAJ13 1 3 5 7 9 13

Minor Chords

Minor MIN 1 b3 5

Minor 6th MIN6 1 b3 5 6

Minor 7th MIN7 1 b3 5 b7

Minor 9th MIN9 1 b3 5 b7 9

Minor 11th MIN11 1 b3 5 b7 9 11

7/11 MIN7%11 1 b3 5 b7 11

Minor Added 9th MINADD9 1 b3 5 9

Minor 6/9 MIN6%9 1 b3 5 6

Minor Major 7th MINMAJ7 1 b3 5 7

Minor Major 9th MINMAJ9 1 b3 5 7 9

Dominant Chords

Dominant 7th DOM7 1 3 5 b7

Dominant 7/6 DOM7%6 1 3 5 6 b7

Dominant 7/11 DOM7%11 1 3 5 b7 11

Dom 7th Sus DOM7SUS 1 4 5 b7

Dom 7/6 Sus DOM7%6SUS 1 4 5 6 b7

Dominant 9th DOM9 1 3 5 b7 9

Dominant 11th DOM11 1 3 5 b7 9 11

Dominant 13th DOM13 1 3 5 b7 9 13

Dom 13th Sus DOM13SUS 1 3 5 b7 11 13

Dom 7th 6/11 DOM7%6%11 1 3 5 b7 9 11 13

Augmented Chords

Augmented AUG 1 3 #5

Augmented 7th AUG7 1 3 #5 b7

Diminished Chords

Diminished DIM 1 b3 b5

Diminished 7th DIM7 1 b3 b5 6

Suspended Chords

Suspended 2nd SUS2 1 2 5

Suspended 4th SUS4 1 4 5

Table 2. Chord provided by JFugue

Duration

Default duration if no duration is specified for a note: Quarter duration

Durations are specified with either a letter or a decimal value that
represents a fraction of a whole duration. Using a letter is quicker to

write and easier to read once you remember the durations most
commonly found in music (whole, half, quarter, eighth, sixteenth). Table
3 shows the durations that are used in Staccato.

The Complete Guide to JFugue

 43

Duration Character Decimal value

Whole W /1.0

Half H /0.5

Quarter Q /0.25

Eighth I /0.125

Sixteenth S /0.0625

Thirty-second T /0.03125

Sixty-fourth X /0.015625

One-twenty-eighth

O /0.0078125

Table 3. Durations that can be specified for a note

The duration comes after the octave if an octave is specified, or the chord

name and any inversions; otherwise it comes immediately after the note.

For example, C5w is a whole C note, fourth octave (as is Cw, since the fifth

octave is the default for a note). F#5h is a F-sharp in the fifth octave, half

duration, Rq is a quarter duration rest, and emini is an E-minor chord,

eighth duration, and a perfectly legal Staccato string but it might be

better stylized as EminI (when using durations with chord names, the

Staccato string is more readable if the chord name is printed in
lowercase and the duration is printed in uppercase).

Staccato supports dotted durations (for example, q.), in which case the

note is played for the original duration plus half of the original duration.
A dotted quarter note is the same as combining a quarter note with an
eighth note.

You can specify a duration as a group of letters to form an aggregate

duration. For example, Db6wwh is a D-flat, sixth octave, that will play for a

total of two whole durations plus a half duration. This is a single tone—

the note will not stop and play again after any of the durations, it will
simply sound for the duration of two and a half whole notes. You can

group any duration letters together in any order. If you use a dotted
duration, the dot applies to the single duration letter immediately to its
left.

If you have many durations that you want to specify as an aggregate, you
can use numbers as a shortcut for repeating the same duration

character. For example, if you have a note that should play for 12 whole

durations, you can say Db6w12 instead of Db6wwwwwwwwwwww. You can also

aggregate these numeric durations, so Db6w12i3 will do exactly what you

expect: play Db6 for twelve whole durations plus three eighth durations.

Durations may also be specified as decimal values, where the decimal
represents the portion of a whole note. To specify a decimal duration, you

must first use the slash (/) character. For example, Db6/2.5 plays the

The Complete Guide to JFugue

 44

same thing as Db6wwh. The decimal notation may be easier to use if you

create programs that generate algorithmic music.

Here are some additional examples of durations:

 player.play("Aw"); // A5 whole note

 player.play("E7h"); // E7 half note

 player.play("60wq"); // Middle-C whole+quarter note

 player.play("60w5"); // Middle-C, 5 whole durations

 player.play("G8i."); // G8 dotted-eighth note

 player.play("Bb6/0.5"); // B-flat, 6th octave, half note

 player.play("C7maj^^q"); // C-major chord, 2nd inversion,

 // 7th octave, quarter note

Triplets and Other Tuplets

Tuplets are groups of notes that have a different rhythmic structure than

would be expected based on the time signature. For example, in a
musical piece with a 4/4 time signature, a triplet of three quarter notes
will be played such that the three notes fit inside the duration of a half

note (a half duration being the next larger duration of the quarter
duration). This means that instead of being played at 0.25 times the
duration of a whole note, these notes are played at 0.1667 times the

duration of a whole note (0.5, the next higher note value, divided across
three notes). Figure 2 shows the music notation used for triplets.

Figure 2. Two triplets (also known as 3-tuplets) of quarter notes. Notice how each

triplet has the same duration of the half note in the bass staff.

Triplets are a special case of tuplets in which there are three notes in the

group. Triplets are the most common tuplet, although other tuplets are
possible (in both music theory and JFugue).

For a triplet, three notes are played with the same duration of the next
greater duration; this is a 3:2 tuplet. In other words, this is three notes

played in two beats. Another example is the 5:4 tuplet, a quintuplet, in
which five notes are played in four beats.

The Complete Guide to JFugue

 45

In JFugue, a tuplet is indicated using an asterisk immediately following
the duration for the note, followed by the type of tuplet, such as 3:2 or

5:4. For example, E6q*3:2 plays an E note, sixth octave, as part of a 3:2

tuplet. This would be similar to saying E6/0.1667. F4q*5:4 is identical to

F4/0.2 and would play one of a quintuplet of notes. Of course, if you are

specifying a tuplet, you probably have multiple notes that you want as

part of that tuplet. While you can specify each note individually, you
might prefer to show the notes grouped together. For this, you can
surround the group of notes in parentheses and add the duration

immediately after the closing parenthesis. Thus, (E G B)q*3:2 plays the

E, G, and B notes in melody, with these three notes all being played in
the duration of a half note. This use of parentheses is an example of
“Collected Notes,” which will be discussed shortly.

JFugue provides a default tuplet value. Since the 3:2 tuplet is so

common, simply saying Cq* will give a C note with a 3:2 tuplet. And since

q is the default duration for a note anyway, you can simply say C* in this

case to get a C note with a duration of 0.16666666666666666. Three of
those will give the duration of a single half note.

Ties

In sheet music, a tie connects two notes of the same pitch1, and indicates
that the two notes are to be played as one note, with the total duration

equal to the sum of the durations of the tied notes. Ties are often used in
sheet music to depict a note that has a duration which stretches across
the bar line between two measures (Figure 3). Ties may also be used to

connect notes to create a combined duration that cannot otherwise be
indicated by note symbols, such as a half note plus an eighth note

(Figure 4).

Figure 3. Tying two notes across a measure

Figure 4. Tying two notes to achieve a combined duration

1 A line or curve connecting notes of different pitches is a slur, which indicates that the

transitions between notes are to be played fluidly. Slurs are not currently supported in

Staccato.

The Complete Guide to JFugue

 46

In Staccato, the dash symbol, -, is used to indicate ties. For a note that is
at the beginning of a tie, append the dash to the end of the duration. For

a note that is at the end of a tie, prepend the dash to the beginning of the
duration. If a note is in the middle of a series of notes that are all tied

together, two dashes are used: one before the duration, and one after. In
each case, think of the dash as indicating whether the tie “follows” the
duration of a note, whether it “continues” the duration of a note, or

whether the note is in the middle of a tie, in which case the tie both
“follows” and “continues” the duration. Each of these cases is shown in
Figure 5, which uses the bar symbol (the vertical line or pipe character,

|) to separate measures.

Figure 5. Examples of ties in a Staccato string. The string for this sequence of

notes is G5q B5q G5q C6q- | C6-w- | C6-q B5q A5q G5q

Ties can also be used with decimal durations. To use a tie in this case,

you must first indicate the use of a decimal duration with the slash (/)

character. Then specify the decimal duration, using the tie dash before,
after, or both before and after the duration. This string plays the same

music as the string in Figure 5, but uses decimal durations: G5/0.25
B5/0.25 G5/0.25 C6/0.25- | C6/-1.0- | C6/-.025 B5/0.25 A5/0.25

G5/0.25.

Notes That Continue Until Explicitly Stopped

The dashes used in ties can also be used to start a note that should play
until it is explicitly stopped. For example, if you wish to implement a user

interface for an organ, you may want to start a note when the user
presses the organ key, and stop the note only when the user releases the
key.

To start a note with undetermined duration, use the shortest possible

duration followed by a dash; for example, C6o-. The duration is necessary

because the parser needs to know whether a note is starting or stopping,

and the placement of the dash relative to the duration (whether it comes
after or before the duration) is used to determine whether the note is
starting or ending. (I could have written JFugue to just know whether a

note were starting or ending based on whether it had already been
started, but I thought that could be too much automation that could lead

to confusion about a note’s state.)

To end a note, again use the shortest possible duration, this time

preceded with a dash; for example, C6-o. Note that when you end a note,

The Complete Guide to JFugue

 47

it only ends the same note that was started. If you start C6o- and B6o-

and then call C6-o, only C6 stops; B6 keeps going until B6-o is used.

Note Dynamics: Note On and Note Off Velocities

Notes may be played with a specified attack and decay velocity. “Note On”
velocity is how quickly the note reaches its full volume. “Note Off” velocity

is how quickly the note decreases from its peak volume after it has
played for its full duration. A note with a large value for “note on” velocity
sounds like it takes a while to build up, and is commonly used for a

“pad” instrument (e.g., Synth Pad). Notes with a large “note off” velocity
continue to resonate after the note has been struck, like a bell or a guitar
string.

Velocity for notes may be specified using the a for “note on” velocity and

d for “note off” velocity. The letters harken back to an older version of

JFugue where these are called “attack velocity” and “decay velocity”,
which is not an accurate set of terms but replacement single characters

that clearly indicate “note on” and “note off” are hard to invent (forward
slash and backslash had been considered since they are visual analogies
to a note increasing to its full volume then decreasing at the end, but the

forward slash is ambiguous with using a forward slash for decimal

duration (e.g., C4/5 could be C4 for 5 whole notes or C4 with a “note on”

velocity of 5), and a backslash in a Java string would require a second

backslash to escape the character (e.g., C4/5\\10 instead of C4/5\10)).

Each character is followed by a value of 0 through 127, which is a MIDI
value that represents the velocity. If you do not specify velocity, a default

value of 64 will be used for both dynamics, and the default value sounds
good – you will not need to tweak this value unless you are doing special

work to, say, simulate a foot pedal or evoke a particularly ethereal (large
values) or choppy (small values) sounds using the velocity dynamics.

For any note, you can specify any or neither of the velocity values, but if
you are specifying both values, the “note on” velocity needs to come

before the “note off” velocity.

The following are value notes with attack and decay velocities set:

player.play("C5qa0d127"); // Sharp on vel., long off vel

player.play("E3w2d0"); // Default on vel, sharp off vel

player.play("C7maja30"); // C7, E7, and G7 (components of

// C7maj) will all play with a

// “note on” velocity of 30

Notes Played in Melody and in Harmony

Notes that are to be played in melody – that is, one after another – are

indicated by individual tokens separated by spaces, as shown in Figure

The Complete Guide to JFugue

 48

6. So far, all of the Staccato examples shown so far in this book have
played notes in melody.

Figure 6. Three notes in melody; the Staccato string is C4q E4q G4q

Notes may also be played in harmony with other notes. The most likely

case is that you want to play different staffs of music, such as a treble
clef and a bass, or a piano, guitar, and flute playing different melodies. In

these cases, you should use the Staccato Voice command, which plays
music on different MIDI channels. The Voice command is discussed in
the next section. A second likely case is that you want to play a chord, in

which case you should use chords. If neither of these cases is true – if
you really have some notes in the same staff that you want to play
together – then read on!

You can use the plus character, +, to connect two or more notes that

should play in harmony in the same channel. The plus character
replaces a space between notes and indicates that the notes are part of

one harmonic unit. Figure 7 shows an example.

Figure 7. Three notes in harmony; the Staccato string is C4q+E4q+G4q

You may also find some occasions when a note is to be played in

harmony while two or more notes are played in melody. To indicate notes
that should be played together while played in harmony with other notes,

use the underscore character, _, to connect the notes that should be

played together. This is much clearer in a picture than in words, so

please take a look at Figure 8. In this example, the C4 note is played

continuously (it has a half duration) while the E4 and G4 notes (each with

a quarter duration) are played as a melody.

Figure 8. A harmony and a melody played together; the Staccato string is

C4h+E4q_G4q

The Complete Guide to JFugue

 49

Like notes, rests and chords may also be played in harmony or in
combined harmony/melody using the plus and underscore characters as

connectors. Only notes, rests, and chords can take advantage of the +

and _ characters.

Collected Notes: Notes that Share Durations or Dynamics

As a shorthand notation, Staccato provides the ability to specify a series
of notes, rests, and chords that might all have the same duration or
dynamics (attack or decay velocities). To do this, group the notes in

parentheses, and immediately after the closing parenthesis, provide the
duration or dynamic information. Staccato will append the information at
the end of the closing parenthesis to each of the elements inside

parentheses.

Figure 9. Sharing durations across notes: (C E G)q

Figure 10. Sharing durations across notes in harmony and mixing additional

dynamics: (C+E+G)4/0.25a60d15

Summary

Notes are the most complex element in Staccato. If you’ve gotten to this

point, step away and take a breath. Things get easier moving forward!

The Complete Guide to JFugue

 50

2.3

Voices and Layers

This chapter discusses voices, also known as channels or tracks, which
let you represent different staffs or instruments in harmony, and layers.

Layers are a JFugue-specific way of creating polyphony within a single
voice, which is particularly useful for playing percussion sounds in MIDI

Channel 10 (or, as you would call it in Staccato, V9 or V[PERCUSSION]).

Voices

Staccato uses the word voice to refer to a channel or track. The MIDI

specification allows for sixteen channels. A variety of MIDI functions,
such as selecting an instrument, apply to a specific channel.

To specify a voice in Staccato, use the V character followed by the

number of the desired voice, or a value in brackets that has been defined

to represent a voice number ([PERCUSSION] is already defined to mean 9).

Voice numbers are zero-based, so valid values are 0 through 15. The
following example plays three perfect fifths – C and G, D and A, and E

and B – by playing one set of notes in Voice 0 and the other in Voice 1.

player.play("V0 C D E V1 G A B"); // Three perfect fifths

The Complete Guide to JFugue

 51

Since instrument selections are per voice, you will need to specify
instruments after you indicate a voice:

player.play("V0 I[Piano] C D E V1 I[Flute] G A B");

The Percussion Voice and Layers

The tenth channel, of V9 in Staccato, is special: it is used to represent

percussive sounds. In V9, each “note” actually represents a non-

chromatic percussion sound, such as drums, cymbals, tambourines, and

woodblocks. For example, whereas Note 60 means “Middle-C” in the

other voices, it means “Hi Bongo” in V9.

Fortunately, you can use predefined values for these percussion sounds

instead of using the raw note numbers or note letters. The following
example uses predefined values along with note durations to show that

these values are treated just the same as notes:

player.play("V9 [Hi_Bongo]q [Hand_Clap]q Rq [Bass_Drum]/0.5");

As with regular notes, you can create “chords” by using the plus

character between notes. For example, if you want to hear a bongo and
hand clap at the same time, you could use the following:

player.play("V[Percussion] [Hi_Bongo]q+[Hand_Clap]q");

However, it can be tedious to specify all of your percussion sounds with
plus and underscore characters. If you wanted to create a multi-layered

percussion background for a song, your V9 channel would quickly be the

hardest thing to set up correctly. Wouldn’t it be better if each percussion
instrument could be represented in its own layer?

This is where Staccato’s layer comes in. A layer makes it easier to specify

“tracks” of percussion sounds. Layers only work with V9, and they work

just like voices – the only difference is that there are no MIDI elements
that work on a per-layer basis, because layers are purely a Staccato

invention.

You can specify any instruments sounds within any layer (unlike a voice,
you are not restricted to a single instrument per layer), although as a
best practice, you may find it useful to use one layer per percussion

instrument.

You may use up to sixteen layers (zero-based, so 0-15), and a layer is

specified with the L character followed by the layer number or a value in

brackets that has been defined to represent a layer number.

The Complete Guide to JFugue

 52

In the following example, the bongo and the hand clap will sound at the
same time:

player.play("V9 L0 [Hi_Bongo]q L1 [Hand_Clap]q");

You can create “chords” of percussion instruments, just like you can

with regular notes. For example, "V9 [Hand_Clap]q+[Crash_Cymbal_1]q"

will play a hand clap and a cymbal crash at the same time, both for a

quarter duration.

MIDI Note Predefined Value MIDI Note Predefined Value

35 ACOUSTIC_BASS_DRUM 59 RIDE_CYMBAL_2

36 BASS_DRUM 60 HI_BONGO

37 SIDE_STICK 61 LO_BONGO

38 ACOUSTIC_SNARE 62 MUTE_HI_CONGA

39 HAND_CLAP 63 OPEN_HI_CONGA

40 ELECTRIC_SNARE 64 LO_CONGA

41 LO_FLOOR_TOM 65 HI_TIMBALE

42 CLOSED_HI_HAT 66 LO_TIMBALE

43 HIGH_FLOOR_TOM 67 HI_AGOGO

44 PEDAL_HI_HAT 68 LO_AGOGO

45 LO_TOM 69 CABASA

46 OPEN_HI_HAT 70 MARACAS

47 LO_MID_TOM 71 SHORT_WHISTLE

48 HI_MID_TOM 72 LONG_WHISTLE

49 CRASH_CYMBAL_1 73 SHORT_GUIRO

50 HI_TOM 74 LONG_GUIRO

51 RIDE_CYMBAL_1 75 CLAVES

52 CHINESE_CYMBAL 76 HI_WOOD_BLOCK

53 RIDE_BELL 77 LO_WOOD_BLOCK

54 TAMBOURINE 78 MUTE_CUICA

55 SPLASH_CYMBAL 79 OPEN_CUICA

56 COWBELL 80 MUTE_TRIANGLE

57 CRASH_CYMBAL_2 81 OPEN_TRIANGLE

58 VIBRASLAP

Table 4. Predefined percussion note values

The Complete Guide to JFugue

 53

2.4

Instruments

For each voice, you may specify an instrument – and you can change

instruments for a given voice during a song. To specify an instrument,

use the I character followed by an instrument number or a value in

brackets that has been defined to an instrument number.

player.play("V0 I[Piano] C I[Flute] D I[Guitar] E");

The MIDI specification defines 128 instruments, the names of which are
listed in the table below. The actual sound that you will hear is generated

by the MIDI synthesizer that the Java Virtual Machine (JVM) uses when
playing the musical instructions in the MIDI data; different synthesizers
have different sounds of varying quality. Often, the default soundbank

that accompanies applications is of poor quality, and this has given MIDI
files a bad rap and the stigma of something leftover from the 1980’s.
Other soundbanks, such as those from a company called Garritan, are

nearly indistinguishable from real instruments.

The Complete Guide to JFugue

 54

Instrument Predefined Value Instrument Predefined Value

Piano Bass

 0 PIANO 32 ACOUSTIC_BASS

 1 BRIGHT_ACOUSTIC 33 ELECTRIC_BASS_FINGER

 2 ELECTRIC_GRAND 34 ELECTRIC_BASS_PICK

 3 HONKEY_TONK 35 FRETLESS_BASS

 4 ELECTRIC_PIANO 36 SLAP_BASS_1

 5 ELECTRIC_PIANO_2 37 SLAP_BASS_2

 6 HARPSICHORD 38 SYNTH_BASS_1

 7 CLAVINET 39 SYNTH_BASS_2

Chromatic Percussion Strings

 8 CELESTA 40 VIOLIN

 9 GLOCKENSPIEL 41 VIOLA

10 MUSIC_BOX 42 CELLO

11 VIBRAPHONE 43 CONTRABASS

12 MARIMBA 44 TREMOLO_STRINGS

13 XYLOPHONE 45 PIZZICATO_STRINGS

14 TUBULAR_BELLS 46 ORCHESTRAL_STRINGS

15 DULCIMER 47 TIMPANI

Organ Ensemble

16 DRAWBAR_ORGAN 48 STRING_ENSEMBLE_1

17 PERCUSSIVE_ORGAN 49 STRING_ENSEMBLE_2

18 ROCK_ORGAN 50 SYNTH_STRINGS_1

19 CHURCH_ORGAN 51 SYNTH_STRINGS_2

20 REED_ORGAN 52 CHOIR_AAHS

21 ACCORDIAN 53 VOICE_OOHS

22 HARMONICA 54 SYNTH_VOICE

23 TANGO_ACCORDIAN 55 ORCHESTRA_HIT

Guitar Brass

24 GUITAR 56 TRUMPET

25 STEEL_STRING_GUITAR 57 TROMBONE

26 ELECTRIC_JAZZ_GUITAR 58 TUBA

27 ELECTRIC_CLEAN_GUITAR 59 MUTED_TRUMPET

28 ELECTRIC_MUTED_GUITAR 60 FRENCH_HORN

29 OVERDRIVEN_GUITAR 61 BRASS_SECTION

30 DISTORTION_GUITAR 62 SYNTH_BRASS_1

31 GUITAR_HARMONICS 63 SYNTH_BRASS_2

Table 5. Predefined instrument values

The Complete Guide to JFugue

 55

Instrument Predefined Value Instrument Predefined Value

Reed Synth Effects

64 SOPRANO_SAX 96 RAIN

65 ALTO_SAX 97 SOUNDTRACK

66 TENOR_SAX 98 CRYSTAL

67 BARITONE_SAX 99 ATMOSPHERE

68 OBOE 100 BRIGHTNESS

69 ENGLISH_HORN 101 GOBLINS

70 BASSOON 102 ECHOES

71 CLARINET 103 SCI_FI

Pipe Ethnic

72 PICCOLO 104 SITAR

73 FLUTE 105 BANJO

74 RECORDER 106 SHAMISEN

75 PAN_FLUTE 107 KOTO

76 BLOWN_BOTTLE 108 KALIMBA

77 SKAKUHACHI 109 BAGPIPE

78 WHISTLE 110 FIDDLE

79 OCARINA 111 SHANAI

Synth Lead Percussive

80 SQUARE 112 TINKLE_BELL

81 SAWTOOTH 113 AGOGO

82 CALLIOPE 114 STEEL_DRUMS

83 CHIFF 115 WOODBLOCK

84 CHARANG 116 TAIKO_DRUM

85 VOICE 117 MELODIC_DRUM

86 FIFTHS 118 SYNTH_DRUM

87 BASS_LEAD 119 REVERSE_CYMBAL

Synth Pad Sound Effects

88 NEW_AGE 120 GUITAR_FRET_NOISE

89 WARM 121 BREATH_NOISE

90 POLY_SYNTH 122 SEASHORE

91 CHOIR 123 BIRD_TWEET

92 BOWED 124 TELEPHONE_RING

93 METALLIC 125 HELICOPTER

94 HALO 126 APPLAUSE

95 SWEEP 127 GUNSHOT

The Complete Guide to JFugue

 56

2.5

Tempo and Time Navigation

How fast do you want your music to play? How can you jump around in
musical time? Let’s find out!

Tempo

Tempo indicates how quickly a song should be played. It is often
expressed early in a Staccato string, since it applies to all musical events

that follow the tempo command. Tempo is applied to the full song as

opposed to individual voices. The Tempo command is a T followed by a

value representing beats per minute (BPM). If no tempo is declared, the
default is 120 BPM.

There are also several predefined values that you may use to make your
tempo statement easier to read, as shown in Table 6. To use these

values, use the T command followed by the name of the predefined value

in square brackets, for example: T[Adagio].

The Complete Guide to JFugue

 57

Predefined value BPM

GRAVE 40

LARGO 45

LARGHETTO 50

LENTO 55

ADAGIO 60

ADAGIETTO 65

ANDANTE 70

ADANTINO 80

MODERATO 95

ALLEGRETTO 110

ALLEGRO 120

VIVACE 145

PRESTO 180

PRETISSIMO 220

Table 6. Predefined tempo values

The following examples show the use of tempo:

player.play("T120 V0 I[Piano] C D E V1 I[Flute] G A B");

player.play("T[Largo] V0 I[Piano] E D C V1 I[Flute] B A G");

Beat Navigation

You can specify music to play at a specific point in the song by giving the
number of beats into the song where the music should play. This is done

using the at sign, @, followed by a value that, like a decimal duration for

a note, consists of the number of whole notes in the integer portion, and
a value representing shorter durations after the decimal point.

For example, if you want Voice 1 to play 1.5 beats into the song that

Voice 0 is playing, you can express this as follows:

player.play("V0 Cq Dq Eq Cq | Eq Dq Fq Aq V1 @1.5 Bq Dq");

In this example, you can achieve the same effect by using Rwq or R/1.5

instead of using @1.5. However, the beats passed to @ is absolute, always

using 0.0 as the beginning of the song; rests are relative to the other
notes that have been played.

If you use JFugue to convert a MIDI song to Staccato using the

MidiParser and StaccatoParserListener classes, you will see extensive

use of the @ command. This is because MIDI captures timestamps with

musical events, and it does not capture rests explicitly. The use of @ is

necessary to make sure all music sounds at the correct time.

The Complete Guide to JFugue

 58

The values given to @ do not have to be sequential during the song. For

example, "@100 Aq @50 Cq @200 Dq" is a legitimate Staccato string. This

would sound like Cq Aq Dq, with space in between each note.

Can you go back in time? Yes! Staccato music is fully parsed and turned
into musical events before any music is played. If you go back in time,

you are just changing the position where new musical events will be
entered.

Marker Navigation

In Section 2.6, you’ll learn about lyrics and markers. Markers provide a

way to place any text, such as comments, into a Staccato string. Markers
can also be used to bookmark the beat time in one voice, which can then

be accessed in other voices.

In the following example, #mark is used to define a marker, and @#mark is

used to change the time to the same number of beats at which #mark was

defined. #mark is the marker, and @#mark changes the time to match the

given marker.

player.play("V0 Cq Dq #mark Fq Aq V1 @#mark Bq Dq");

This will sound like Cq Dq followed by Fq and Bq in harmony, followed by

Aq and Dq in harmony. This is not a great example, as a clearer way to

get this result would be "V0 Cq Dq Fq Aq V1 Rq Rq Bq Dq", but the point

is clear.

Markers need to be defined before the first reference to the marker in the

Staccato string. For example, "V0 @#mark Aq V1 Cq Dq #mark Fq" will

not work because #mark has not been declared by the time it is requested

with @#mark.

The Complete Guide to JFugue

 59

2.6

Key Signatures, Time Signatures,
Bar Lines, Markers, and Lyrics

Staccato can represent key signatures and time signatures, and bar lines
can be used to both visually separate measures and to provide indexes to

measures. Staccato also provides markers that can be used to indicate
sections of music, as well as lyrics that accompany the music.

Key Signature

Default: C-Major

If you specify a key signature, JFugue will play the Staccato music in the

key or scale that you indicate. For example, if you specify a key signature
of F-major, any B notes that are in your Staccato music will be played as

B-flat (unless you specify otherwise by using the natural using n, for

example, Bn).

To specify a key signature, use the phrase KEY: (including the colon)

followed by the root note of the key, then maj or min to indicate major or

minor scale. For example, KEY:Cbmaj will set the key to C-flat major.

The Complete Guide to JFugue

 60

There is a second way to specify keys as well, and this way does not
require you to translate the number of sharps or flats you see in a key

signature in sheet music to a root and a scale. You can say KEY: followed

simply by the number of sharps or flats that appear in the key signature.

For example, KEY:Cbmaj is the same as KEY:bbbbbbb (see Figure 11), and

KEY:Gmaj is the same as KEY:#.

Figure 11. This C-flat Major key signature can be represented

as KEY:Cbmaj or KEY:bbbbbbb

Note that key signatures are specified differently than in earlier versions

of JFugue, in which key signatures were indicated with the letter K

followed by the root and major or minor scale.

Time Signature

Default: 4/4

Time signatures may be specified in Staccato, although JFugue will not
alter the way that music is played when time signatures are present.
However, time signature information will be maintained and is useful for

other music formats, such as MIDI, MusicXML or LilyPond.

A time signature is specified by using the phrase TIME: (including the

colon) followed by the beats per measure, a slash, and note that receives

one beat. For example, a 6:8 time signature would be specified as

TIME:6/8.

Bar Lines

You can use bar lines in Staccato the same way you would expect to use

them in music notation: to separate measures of notes. While the use of
bar lines does not change how music is played, it does help make the
Staccato music easier to read. And, since Staccto ignores whitespace

between musical elements, you can use spaces to make bar lines appear
at the same column of text when your application contains multiple
pieces of music on different lines of code.

A bar line is simply the pipe character, |.

Although bar lines do not change how music is played, JFugue will parse

bar lines and let any parser listeners know when bar line has been
found.

The Complete Guide to JFugue

 61

Bar lines can optionally be followed by a number, which you can use as

an index for the measure; for example, |122. These value of these indexes

are not checked to make sure they follow a sequential order; you are free

to use any number after a bar line. Alternatively, a bar line can be
followed by a dictionary word. Dictionary items will be looked up and the

corresponding numeric value will be sent in the onBarLineParsed()

message to parser listeners. You may want to use indexes or dictionary

words after a bar line for two reasons: to keep track of the measures as
you write your Staccato music string, or to coordinate the activity of new
parser listeners that you create.

Markers

You can use a marker to provide the equivalent of comments in your
Staccato string. Parser listeners will also be notified when a marker is

parsed, so you can also use markers to encode special instructions that
your parser listeners know how to respond to. A marker is the hash

character followed by either a single word such as #chorus, or a phrase

in parentheses, such as #(this is the exciting part!).

If you are creating music in realtime using JFugue’s RealTimePlayer, you

can use markers to trigger effects that are outside the range of the

musical events that parsers can listen to. For example, you may want to
control a strobe light or animation of a character in addition to realtime
music, in which case you can create and respond to markers like

#(strobe speed 100) or #(character1 start cabbage-patch) and,

presuming you’ve written a parser listener that knows how to parse these

command, you can make your realtime application come to life. (Keep in
mind that JFugue’s standard Staccato-to-MIDI parsing is not done in

realtime.)

Lyrics

Lyrics can be added to a Staccato music string by using the apostrophe

character followed by either a single word or a phrase in parentheses.

Here are two examples: ‘twinkle and ‘(twinkle twinkle little star).

While lyrics do not change the way that music is played, they are sent to
parser listeners when they are found. This allows lyrics to be inserted

into MIDI and other music formats. Keep in mind that as with markers,

lyrics can be used in realtime (using the RealTimePlayer or TemporalPLP)

if you would like to create an application that displays lyrics along with
the music it plays, but the standard Staccato-to-MIDI parsing is not done

in realtime.

The Complete Guide to JFugue

 62

2.7

Staccato Style and Music Transcription

Congratulations, you have learned the major parts of Staccato! Don’t
worry, there’s only one more section of this book that gets into even more

details of what you can do with Staccato. But before that, let’s take a
break and share some thoughts on stylizing your Staccato strings so they

are easy to read.

Staccato Style Recommendations

The following recommendations of Staccato style are intended to help
maximize the readability of Staccato strings as well as maintain

consistency across users.

1. Staccato is not case-sensitive, and the number of whitespace
characters between musical tokens (e.g., notes, instruments,
voices) does not matter, as long as there is at least one space

between tokens. Use upper/lowercase and spaces as much as
necessary to improve the readability of your Staccato strings.

2. Use a capital letter for a character representing an instruction,

such as I, V, and L (for Instrument, Voice, and Layer).

The Complete Guide to JFugue

 63

3. Use a capital letter for notes C, D, E, F, G, A, B, and the rest

character, R. Use lowercase b for a flat and lowercase n for a

natural.

4. Use lowercase letters when specifying chords: maj, min, aug, and so

on. Along with the previous point, a C-major would be Cmaj.

5. Use a lowercase letter for note durations: w, h, q, i, s, t, x, o.

However, if you are using durations after chords, it is more legible

to use uppercase letters for note durations, such as CmajQ.

6. Make use of the fact that durations can be cumulatively added
together to represent a total duration. You may find, for example,

that in some cases is is more clear to say Riii than Rq. (dotted

quarter duration).

7. Use mixed case (also known as camel case) to represent

instrument names, percussion names, or tempo names: I[Piano],

[Hand_Clap]q, T[Adagio].

8. Keep one space between each token, but if writing music for

multiple voices, it’s useful to put each voice on its own line, and
use spaces to make the notes line up, as shown below.

9. Use the vertical bar character (also known as pipe), |, to indicate

bar lines between measures.

10. Functions should use camel case for long names, or all capitals

for abbreviated names (e.g., :PolyphonicPressure or :PP)

Below are examples of Staccto strings that employ some of these
guidelines.

// First two measures of "Für Elise", by Ludwig van Beethoven

player.play("V0 E5s D#5s | E5s D#5s E5s B4s D5s C5s " +

 "V1 Ri | Riii ");

// First a few simple chords

player.play("T[Vivace] I[Rock_Organ] Db4minH C5majW C4maj^^");

Transcribing Sheet Music to Staccato

This section describes how to transcribe sheet music to Staccato. We’ll
use the first couple of measures of Antonio Vivaldi’s “Spring” in this
demonstration.

The following example uses the Pattern class, which you’ll learn more
about in future sections. For now, all you need to know is that a Pattern

is an object that contains a Staccato string.

The Complete Guide to JFugue

 64

“Spring”, from “The Four Seasons”

Antonio Vivaldi

Figure 12. Sheet music for a portion of “Spring”

The first thing to notice is that there are two clefs, the treble clef and the

bass clef, which means we will want to enter the music into two voices.
We will put notes from the treble clef into Voice 0, and notes from the
bass clef into Voice 1.

Before we start entering notes, let’s start with the tempo (“Allegro”) and

time signature indicated in the sheet music.

 Pattern pattern = new Pattern("T[Allegro] TIME:4/4");

Now we can start entering notes for the treble clef. We first see a C-note,

quarter duration. Recall from Table 1 that this note is in the fourth

octave. That means we have C4q.

Next is a bar line, indicating the end of the first measure. We’ll add a

pipe symbol, |, to our Staccato string.

Then we see a C and E note played in harmony. These are quarter notes

again. The notation for these notes is C4q+E4q. And, we have three of

them in a row.

Next are two eighth notes, D and C. Although they are barred together,

the bar is purely stylistic, and does not change the way that eighth notes

are played. We will need to add D4i and C4i.

Then there is another measure bar, so add another pipe symbol. Then

there are two notes, E and G, played in harmony with a dotted half

duration. We’ll need to add E4h.+G4h. to the Staccato string. We can

depend on the default octave here (the default is 4th octave for notes, 3rd
octave for chords).

At this point, the transcribed music should look like this:

V0 C4q | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.

The Complete Guide to JFugue

 65

Continuing on, there are the eighth G and F notes, so add G5i F5i.

The next eight notes are a duplicate of notes that we have already

entered. We have a couple of options here. The most obvious option is
that we can re-type the notes. Or, we could put the duplicated notes in a
Pattern of their own, and use that Pattern whenever we see this set of

eight notes. Or, we can also use methods on the Pattern class to repeat a
subset of notes that have already been entered. Since Patterns aren’t
discussed in detail until the next chapter, let’s leave the Pattern options

aside and simply re-type (or copy-and-paste) the notes.

The transcribed music now looks like this:

V0 C4q | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh. G4i F4i |

C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.

Now we can work on the bass clef. First, there’s a quarter rest. It is

important to add this rest to the transcribed music so the clefs line up

correctly. Add Rq to the bass clef. Add a bar line, too.

Next, we see a bunch of C notes, half duration. According to Table 1,

these notes are in the 3rd octave. Add these notes to the bass clef, and
the MusicString should look like this:

V1 Rq | C3h C3h | C3h C3h | C3h C3h | C3h

The program itself should look like this:

Pattern pattern = new Pattern("T[Allegro]");

pattern.add("V0 C4q | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.

G4i F4i | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.");

pattern.add("V1 Rq | C3h C3h | C3h C3h | C3h C3h | C3h ");

Since extra spaces are allowed in the Staccato string, you can space out

the clefs so they line up more legibly:

Pattern pattern = new Pattern("T[Allegro]");

pattern.add("V0 C4q | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.

G4i F4i | C4q+E4q C4q+E4q C4q+E4q D4i C4i | Eh.+Gh.");

pattern.add("V1 Rq | C3h C3h | C3h C3h

 | C3h C3h | C3h ");

// Now, play the music!

Player player = new Player();

player.play(pattern);

Congratulations! You can now transcribe music into Staccato, the music

representation system that has its origin in JFugue.

The Complete Guide to JFugue

 66

The Complete Guide to JFugue

 67

Part 3

Advanced Staccato

The Complete Guide to JFugue

 68

“The Walrus and the Carpenter” from
“Songs from Alice in Wonderland and Through the Looking-Glass”

The Complete Guide to JFugue

 69

3.1

MIDI Effects

In addition to the musical events discussed in the previous section, MIDI
allows for a range of effects. For example, you can use the MIDI pitch

wheel to make a note slide up and down, and you can use controller
events to send special messages to MIDI controllers. You can specify

these effects in Staccato using Functions.

If you’re familiar with earlier versions of JFugue, the way MIDI effects are

specified in this version differ because of the use of functions. In the
past, various MIDI effects were specified by a variety of special characters

– an ampersand (&) for pitch wheel, a plus (+) for channel pressure, and

so on. These special characters had little resemblance to the effects that

they represented, and were subsequentially difficult to use. The new
Function capability provides an excellent mechanism for representing
MIDI effects using meaningful names.

JFugue provides functions for the following MIDI effects:

 Pitch Wheel

 Channel Pressure

 Polyphonic Pressure

 Controller Events

 System Exclusive (SYSEX) Events

The Complete Guide to JFugue

 70

MIDI effects are discussed in the MIDI Specification. Please note that not

all synthesizers (hardware or software) are capable of rendering all of
these MIDI effects. If you don’t hear these effects, check whether your

synthesizer is capable of producing them.

Pitch Wheel (aka Pitch Bend)

The pitch wheel can be used to create Theremin-like effects in your

music, in which notes seem to slide within a range of ±8192 “cents”, or
1/100ths of a Hertz, which musically corresponds to ±2 semitones. In
addition to using the pitch wheel for sliding effects, JFugue uses the

pitch wheel to make microtonal adjustments for notes, enabling some
Eastern styles of music to be played easily (see also Section 3.2 for a
discussion of microtones).

The function to adjust the pitch wheel for the following notes is

:PitchWheel, :PW, :PitchBend, or :PB. The pitch wheel function can take

two parameters, the least significant bit (LSB) and the most significant

bit (MSB) of the pitch wheel change or a single parameter that is integer

calculation equal to MSB*128+LSB. A value of (0, 64) (using LSB, MSB)

or 8192 (using an integer) is the default value representing no change in

the following notes’ frequency.

Note that the pitch wheel applies to a channel (or what JFugue calls a
voice). This means that you cannot play two microtonal notes in harmony
in a single channel. However, pitch wheel changes can occur

independently in separate voices, so microtones played in harmony can
be created if each microtone is in a separate channel.

Channel Pressure

Many MIDI devices are capable of applying pressure to all of the notes
that are playing on a given channel. In JFugue, channel pressure is

indicated by using the :ChannelPressure or :CP function, followed by a

value from 0 to 127 (for example, :CP(110)). Channel pressure is applied

to the channel (or voice) that is currently being played.

Polyphonic Pressure

Polyphonic pressure, also known as key pressure, is pressure applied to
an individual note. This is a more advanced feature than channel
pressure, and not all MIDI devices support it. In JFugue, polyphonic

pressure is indicated with the :PolyPressure, :PolyphonicPressure, or

:PP function followed by the key value (i.e., the note value), specified as a

value from 0 to 127, followed by a comma, and finally by the pressure

value, from 0 to 127.

http://www.midi.org/techspecs

The Complete Guide to JFugue

 71

For example, the following function call applies a pressure of 75 to

Middle-C (note 60): :PP(60, 75). Note that this command does not

accept note values, so using C5 in this case would not work. (Ambitious

software developers are invited to think about how JFugue’s parsers
could be adjusted to make that work.)

The difference between channel pressure and polyphonic pressure is that
channel pressure applies equally to all of the notes played within a given

channel, whereas polyphonic pressure is applied individually to each
note within a channel.

Controller Events

The MIDI specification defines a number of controller events that are
used to specify a wide variety of settings that control the sound of the

music. These include foot pedals, left-to-right balance, portamento (notes
sliding into each other), tremulo, and so on. If you are interested in
understanding more about controller events, you will definitely want to

do research outside of JFugue, perhaps starting with the MIDI
Specification.

The Controller Event function, :ControllerEvent or :CE, tells JFugue to

set a value on the given controller. The function takes two values in
parentheses: the controller name or number, and a value. For example,

:ControllerEvent(Chorus_Level,64) will set the Chorus_Level event to

64. :CE(93,64) would do the same thing, since the Chorus_Level resolves

to controller 93. A full list of the controllers is shown in Table 7.

If you're familiar with MIDI Controllers, you may know that there are 14
controllers that have both "coarse" and "fine" settings. These controllers
essentially have 16 bits of data, instead of the typical 8 bits (one byte) for

most of the others. There are two ways that you can specify coarse and
fine settings.

The first way is quite uninspired – you can set a value on each controller.
But if you have a 16 bit value in mind, you will have to break it up into a

high and low byte value. For example, if you want to set the Foot Pedal to

an overall value like 1345, you would say :CE(Foot_Pedal_Coarse,10)

:CE(Foot_Pedal_Fine,65).

Surely, JFugue can be smarter than this! Indeed it is: For any of those
14 controller events that have coarse and fine components, you can

specify both values at the same time using :CE(Foot_Pedal,1345). Isn’t

that nicer? Behind the scenes, JFugue will make the calculations
necessary to figure out how much to give to the coarse and fine settings.
Suppose you would like to set the volume to 10200, out of a possible

range of 0 through 16383. Just use :CE(Volume,10200). There is no need

The Complete Guide to JFugue

 72

for you to figure out the high byte and low byte of 10200; JFugue will
split the values into high and low bytes for you. See Table 8 for the set of

combined controller values.

Some controller events have on/off settings instead of a range of values.

For these controllers, a value of 127 means “on” and a value of “0” means

off. JFugue has defined two constants, ON and OFF, that you can use

instead of the numbers, as in the expression :CE(Local_Keyboard,ON).

JFugue also defines the word DEFAULT, which has a value of 64.

MidiDictionary Value # MidiDictionary Value

0 BANK_SELECT_COARSE 70 SOUND_VARIATION

1 MOD_WHEEL_COARSE 71 SOUND_TIMBRE

2 BREATH_COARSE 72 SOUND_RELEASE_TIME

4 FOOT_PEDAL_COARSE 73 SOUND_ATTACK_TIME

5 PORTAMENTO_TIME_COARSE 74 SOUND_BRIGHTNESS

6 DATA_ENTRY_COARSE 75 SOUND_CONTROL_6

7 VOLUME_COARSE 76 SOUND_CONTROL_7

8 BALANCE_COARSE 77 SOUND_CONTROL_8

10 PAN_POSITION_COARSE 78 SOUND_CONTROL_9

11 EXPRESSION_COARSE 79 SOUND_CONTROL_10

12 EFFECT_CONTROL_1_COARSE 80 GENERAL_PURPOSE_BUTTON_1

13 EFFECT_CONTROL_2_COARSE 81 GENERAL_PURPOSE_BUTTON_2

16 SLIDER_1 82 GENERAL_PURPOSE_BUTTON_3

17 SLIDER_2 83 GENERAL_PURPOSE_BUTTON_4

18 SLIDER_3 91 EFFECTS_LEVEL

19 SLIDER_4 92 TREMULO_LEVEL

32 BANK_SELECT_FINE 93 CHORUS_LEVEL

33 MOD_WHEEL_FINE 94 CELESTE_LEVEL

34 BREATH_FINE 95 PHASER_LEVEL

36 FOOT_PEDAL_FINE 96 DATA_BUTTON_INCREMENT

37 PORTAMENTO_TIME_FINE 97 DATA_BUTTON_DECREMENT

38 DATA_ENTRY_FINE 98 NON_REGISTERED_COARSE

39 VOLUME_FINE 99 NON_REGISTERED_FINE

40 BALANCE_FINE 100 REGISTERED_COARSE

42 PAN_POSITION_FINE 101 REGISTERED_FINE

43 EXPRESSION_FINE 120 ALL_SOUND_OFF

44 EFFECT_CONTROL_1_FINE 121 ALL_CONTROLLERS_OFF

45 EFFECT_CONTROL_2_FINE 122 LOCAL_KEYBOARD

64 HOLD_PEDAL 123 ALL_NOTES_OFF

65 PORTAMENTO 124 OMNI_MODE_OFF

66 SUSTENUTO_PEDAL 125 OMNI_MODE_ON

67 SOFT_PEDAL 126 MONO_OPERATION

68 LEGATO_PEDAL 127 POLY_OPERATION

69 HOLD_2_PEDAL

Table 7. Controller values

Combined Value MidiDictionary Value

The Complete Guide to JFugue

 73

16383 BANK_SELECT

161 MOD_WHEEL

290 BREATH

548 FOOT_PEDAL

677 PORTAMENTO_TIME

806 DATA_ENTRY

935 VOLUME

1074 BALANCE

1322 PAN_POSITION

1451 EXPRESSION

1580 EFFECT_CONTROL_1

1709 EFFECT_CONTROL_2

12770 NON_REGISTERED

13028 REGISTERED

Table 8. Combined controller constants. Integers can be assigned to these,

and JFugue will figure out the high and low bytes.

System Exclusive Events

The MIDI specification provides system exclusive events for
manufacturers and devices to use to their own unique settings. Again,
for more information, please consult the MIDI specification. JFugue lets

you specify System Exclusive events using the :SysEx or :SE function,

which takes a list of comma-separated bytes as a parameter. There is not
a specific good example here, but an expression similar to

:SysEx(34,56,24,32) would be a valid use of the function. Several of the

initial bytes may specify the manufacturer ID. There are also “Universal

Exclusive Messsages” that are not specific to a particular manufacturer.
More information should be available in both the MIDI specification and
device-specific documentation.

The Complete Guide to JFugue

 74

3.2

Microtones

Microtonal music is music in which the tuning is not based on twelve
semitones (i.e., the frequency of each note is the 12th root of 2 greater

than the previous note). It is popular in Indian classical music, Turkish
music, and Indonesian gamelan music. Fortunately, Staccato provides a

simple way to play microtones.

Specifying Microtones in Staccato

To specify a microtone in Staccato, use the letter m followed by the
frequency, in Hertz, of the sound you are interested in. For example:

Player player = new Player();

player.play("m512.3q");

This will play 512.3 Hertz at a duration of a quarter note.

To create the actual music that will be played through the MIDI system,
Staccato converts the microtone to a series of MIDI Pitch Wheel and Note

events. Recall that the MIDI Pitch Wheel is used to change the pitch of a
note by hundredths of a half-step, or cents. The actual MIDI played by
the line above is:

":PitchWheel(5192) 72/0.25 :PitchWheel(8192)"

The Complete Guide to JFugue

 75

An algorithm in the MicrotonePreprocessor class computes the pitch

wheel and note that correspond to the desired frequency.

Microtones and Musical Representation

It is likely that you may want to use microtones but not think of music
as frequencies. For example, if you are playing Indian Carnatic music, it

would be more natural for you to think of notes like S and R3 rather
than microtones like 261.6256 and 290.6951. In the next section, you

will learn about Replacement Maps, which will allow you to create a

Map<String, String> that maps, for example, S to m261.6256 and R3 to

m290.6951. Then, your play() statement would look like this:

player.play("<S>q <R3>q");

The ReplacementMapPreprocessor will convert this to microtones:

"m261.6256q m290.6951q"

And the MicrotonePreprocessor will convert this to MIDI commands:

":PitchWheel(8192) 60q :PitchWheel(8192) :PitchWheel(6750) 62q

:PitchWheel(8192)"

This line will then be sent to the StaccatoParser to be parsed and played

by the MidiParserListener, which will receive the Pitch Wheel and Note

events and make the desired music.

Keep in mind that not all MIDI Synthesizers implement the Pitch Wheel

functionality. If you are not hearing the music that you expect, check to
ensure that the synthizer you are using actually implements pitch bend
or the pitch wheel. Additionally, recall that pitch wheel can be specified

per channel (or voice). This means that you cannot play two microtones
in harmony in a single channel since they depend on a different pitch
wheel setting. However, you can play two microtones in harmony if they

are played in separate channels.

The Complete Guide to JFugue

 76

3.3

Replacement Maps

JFugue strives to let you express music the way you need to express
music, while providing a means for converting those expressions to

musical instructions that JFugue will understand. A good example of

this is Indian Carnatic music, which uses different note names, like S,

R1, and M1. The sounds that those notes should make are specific

instances of microtones. Using Replacement Maps, you can tell JFugue

to replace a note name like S with a microtone like m261.62.

Creating a Replacement Map

A Replacement Map is really a simple Map<String, String>. The key for

a map entry is the notation that you want to replace, and the value is
what to replace it with. For example, here is a CarnaticReplacementMap,

using the rarely-seen but nicely-succinct double-brace initialization
feature in Java:

public class CarnaticReplacementMap extends HashMap<String,

String> {{

 put("S", "m261.6256");

 put("R1", "m275.6220");

 put("R2", "m279.0673");

 put("R3", "m290.6951");

The Complete Guide to JFugue

 77

 put("R4", "m294.3288");

 put("G1", "m310.0747");

 put("G2", "m313.9507");

 put("G3", "m327.0319");

 put("G4", "m331.1198");

 put("M1", "m348.8341");

 put("M2", "m353.1945");

 put("M3", "m367.9109");

 put("M4", "m372.5098");

 put("P", "m392.4383");

 put("D1", "m413.4330");

 put("D2", "m418.6009");

 put("D3", "m436.0426");

 put("D4", "m441.4931");

 put("N1", "m465.1121");

 put("N2", "m470.9260");

 put("N3", "m490.5479");

 put("N4", "m496.6798");

}}

Simply submit this to the ReplacementMapPreprocessor:

ReplacementMapPreprocessor.getInstance().setReplacementMap(

 new CarnaticReplacementMap());

Now, you can use any of the keys, placed between angle brackets, into
your Staccato string, like the following:

Player player = new Player();

player.play("<S> <R1> <R2> <R3> <R4>");

The ReplacementMapPreprocessor will find all strings within angle

brackets and replace them with the values from the map. (If the key is
not found in the map, the key is placed back into the string). The output
in this example is:

m261.6256 m275.6220 m279.0673 m290.6951 m294.3288

The MicrotonePreprocessor will then convert these microtones to Pitch

Wheel and Note events so the music can be played with a MIDI

synthesizer.

Eliminating the Need for Angle Brackets

You just read that the ReplacementMapPreprocessor looks for strings
within angle brackets, and it knows that the string inside those angle

brackets are the keys for looking into the replacement map to find
replacement values. The angle brackets are there on purpose to prevent

you from inadvertently replacing things you did not mean to replace.

The Complete Guide to JFugue

 78

But let’s take off the training wheels. Wouldn’t it be nice to eliminate
those angle brackets and just say:

Player player = new Player();

player.play("S R1 R2 R3 R4");

Guess what? You can! (Which I suppose you expected when you read the

title of this section.) All it takes is a call to

setRequireAngleBrackets(false) in ReplacementMapPreprocessor.

Replacing Musical Tones with Solfege

One way of introducing music to new learners is to use solfege (do, re,
mi) instead of note letters (C, D, E). JFugue provides a

SolfegeReplacementMap that lets you use solfege in the place of note

letters. This is how you would write music in solfege using JFugue:

ReplacementMapPreprocessor rmp =

 ReplacementMapPreprocessor.getInstance();

rmp.setReplacementMap(new

 SolfegeReplacementMap()).setRequireAngleBrackets(false);

Pattern pattern = new Pattern("do re mi fa so la ti do");

System.out.println(rmp.preprocess(pattern.toString().

 toUpperCase(), null));

When you run this code (also provided in the source code as

SolfegeReplacementMapDemo), you will see that the solfege string is

converted to C D E F G A B C.

This example specifies that angle brackets do not need to be provided.

That’s fine for a simple note example, but if you want to start adding
things like duration to notes, you will need a way to separate the solfege
from the durations. Otherwise, the parser won’t know what to do with

something like “doq” (quarter-duration Do) or “mimini” (Eighth-duration

Mi Minor chord!). This is when you would want to use angle brackets.

The brackets protect the string that will be converted to something else.
And, the angle brackets are removed when the replacement is successful.

“<do>q” will resolve to “Cq”, not “<C>q” (unless “do” could not be found in

the replacement map).

Continuing with the previous example:

rmp.setRequireAngleBrackets(true);

player.play(new Pattern("<Do>q <Re>q <Mi>h | <Mi>q <Fa>q <So>h |

<So>q <Fa>q <Mi>h | <Mi>q <Re>q <Do>h"));

The Complete Guide to JFugue

 79

Creating Your Own Replacement Map

Remember, a replacement map is any Map<String, String>, where the

key is what you place in your Staccato string and the value is what
replaces the string as part of the replacement. There are no limits to

what you can place in the keys, especially when you separate the keys
from other musical elements with angle brackets. And really, there are

no limits to what the values can be, with the only constraint being that if

you want to play the string with Player.play(), it will need to be valid

Staccato. In that case, the values can be any valid Staccato, not
necessarily limited to a single token. You could, for example, create a
replacement map that replaces strings with entire Patterns, or one that

replaces some keys with valid Staccato but other keys with values that
would be keys the second time you run a replacement. Which brings us

to the next interesting idea about iterative replacement.

Replace, Replace Again, Replace Again… Iterative Replacement

There is a little secret in the ReplacementMapProcessor that you can use

do experiment with some fun musical effects: Replacements can be
iteratively applied. The value of a replacement can contain keys that will

be replaced the next time around.

For example, let’s say your replacement map contains an entry like “C 

C D”. You then create a string consisting of “C”. As we’ve used the

ReplacementMap so far, you would run the code and get “C D” as your

string. But you can send this back to the ReplacementMap again. This

time around, you’ll get “C C D.”

You can loop for a number of times that you specify through the

setIterations() method. By default, the preprocessor uses only one

interation. Later in this book, you will find a cool example that shows
how to use multiple iterations to create fractal music using a

Lindenmayer system!

The Complete Guide to JFugue

 80

3.4

Functions

JFugue provides a new capability that lets you express functions that
can automate musical tasks that might otherwise be time-consuming or

arduous, let you experiment with novel musical effects, or send musical
events on your behalf. You have already been introduced to functions for

specifying MIDI effects like :Sysex or :ChannelPressure. This section

provides more details on the use of functions, including instructions on

creating your own functions.

Preprocessor Functions vs. Subparser Functions

There are two types of functions: preprocessor functions, which are

converted to Staccato strings before any parts of the Staccato string are
parsed, and subparser functions, which are parsed as the rest of the

Staccato string is parsed. Both functions look the same when written in
Staccato. However, there are differences in how the functions are
programmed and how the functions act when they are called.

Use a preprocessor function when you want your function to use the
parameters passed to it to generate replacement Staccato elements. Use

a subparser function when you want your function to fire events to
ParserListeners. See the sections below for more information.

The Complete Guide to JFugue

 81

Preprocessor and Subparser Functions in JFugue

The StaccatoParser is responsible for creating the list of preprocessor

and subparser functions that will be used to convert an incoming
Staccato string to music. An extensible approach might use Java
reflection to find all of the classes that are preprocessors or subparsers

and pull those in automatically, but as the code is written currently, the

list of processors is hard-coded. However, the FunctionManager class is

designed for extensibility. You can get an instance of each of this object

using its getInstance() method and add new preprocessor or

subprocessor function. The order in which processors are added is also
significant: processors listed first get to run before the others.

The list of preprocessors that the StaccatoParser uses, in order, is:

- ReplacementMapPreprocessor - see Section 3.3.

- InstructionPreprocessor - see Section 3.5.

- UppercasePreprocessor - converts all characters in the string to

uppercase.

- CollectedNotesPreprocessor – expands sets of notes that are

grouped together with parentheses, for example converting (C E

G)q to Cq Eq Gq.

- ParenSpacePreprocessor – for any remaining items in parentheses,

removes the parentheses and replaces spaces that occur within
those parentheses with underscore characters

- FunctionPreprocessor – you’re about to learn about this!

- MicrotonePreprocessor – see Section 3.4.

After running all of the preprocessors, the StaccatoParser then attempts

to parse the string using the following subparsers, in order:

- NoteSubparser – parses notes

- BarLineSubparser – parses the bar line, |.

- IVLSubparser – parses instrument, voice, and layer commands

- SignatureSubparser – parses key signatures and time signatures

- TempoSubparser – parses the tempo command

- BeatTimeSubparser – parses the beat time, bookmark, and

bookmark request commands

- LyricMarkerSubparser – parses lyrics and markers

The Complete Guide to JFugue

 82

- FunctionSubparser – parses subparser functions – read more

ahead!

Creating a Preprocessor Function

A preprocessor function will be converted to a Staccato string before the

any of the Staccato string is sent to the StaccatoParser. An example of a
preprocessor function might be one that plays an arpeggiated chord.

Given a chord, each note will be played in harmony for a fraction of the
total duration of the chord. Here is what this will look like in Staccato:

Player player = new Player();

player.play(":Arpeggiated(Cmajq)");

And this is the actual music that we would like to have played:

C3/0.08333333333333 E3/0.08333333333333 G3/0.08333333333333

Each element of the chord is played in melody for one-third of the overall
duration.

Let’s create an arpeggiated chord function that does this. You will find a
class called ArpeggiatedChordFunction in the JFugue API (it’s in
org.staccato.functions), but here you will learn how it was made.

First, the class needs to implement the PreprocessorFunction interface:

public class ArpeggiatedChordFunction implements

PreprocessorFunction {

Next, each function (whether it is a preprocessor function or a subparser
function) is intended to be a singleton that maintains no state; so, it

should have a static getInstance() method and a private constructor:

 private static ArpeggiatedChordFunction instance;

 private ArpeggiatedChordFunction() { }

 public static ArpeggiatedChordFunction getInstance() {

 if (instance == null) {

 instance = new ArpeggiatedChordFunction();

 }

 return instance;

 }

Then, a PreprocessorFunction needs an apply() method. For

parameters, it takes two things: the string contained within the

parentheses of the function call, and the StaccatoParserContext, which

contains information about the context of the parser. This includes

things like dictionary definitions. The PreprocessorFunction’s apply()

The Complete Guide to JFugue

 83

method returns a String that contains the new Staccato string that will
be used to replace this function call. This is different from a

SubparserFunction, in which the apply() method is a void.

For an arpeggiated chord function, we’d like to get the chord from the
parameter, use the Chord API to get the notes, compute new durations

for each note, and create a Staccato string that would play those notes.

 @Override

 public String apply(String parameters,

StaccatoParserContext context) {

 Chord chord = new Chord(parameters);

 Note[] notes = chord.getNotes();

 double duration = chord.getRoot().getDuration();

 double durationPerNote = duration / notes.length;

 StringBuilder buddy = new StringBuilder();

 for (Note note : notes) {

 buddy.append(Note.getToneString(note.getValue()));

 buddy.append("/");

 buddy.append(durationPerNote);

 buddy.append(" ");

 }

 return buddy.toString().trim();

 }

Finally, each function needs a name. In fact, functions can respond to

several names. This is intended to allow long-form names (e.g.,
“ControllerEvent”) for readability and clarity, and shorter abbreviations

(e.g., “CE”) for brevity. These should be written in all capital letters, since
the UppercasePreprocessor will come through and turn all characters in
the Staccato string to uppercase, even though Staccato itself is not case-

sensitive.

 @Override

 public String[] getNames() {

 return new String[] { "ARPEGGIATED", "AR" };

 }

And you’re done! Close up the class with an ending brace, and you’ve got

an ApreggiatedChordFunction!

To use this function, you need to register an instance of the

ArpeggiatedChordFunction it with the FunctionManager:

FunctionManager.getInstance()

.addPreprocessorFunction(ArpeggiatedChordFunction.getInstance());

The Complete Guide to JFugue

 84

Now you can call that play() statement from before, and you’ll hear an

arpeggiated chord!

Creating a Subparser Function

A subparser function is conceptually very similar to a preprocessor

function, except it happens as the Staccato string is parsed instead of
before. This means that for a subparser function to have an effect, it

needs to fire musical events to ParserListeners. Keep in mind that these

events would be fired as the music is parsed, rather than as the music is
played. Played music has already been fully parsed. (But you can use the

TemporalPLP to respond to parser events while – or before or after, given

some offset in milliseconds – music is playing. See Section 5.3 to learn

about TemporalPLP). A ParserListener will receive an event from

onFunctionParsed() before the function is applied.

You have aready seen subparser functions if you have read the section

on MIDI Effects. All of those effects, such as :ControllerEvent or

:PitchWheel, are expressed as subparser functions.

Let’s create a new subparser function that insert a special marker in the
MIDI sequence to, say, control a light display as the music plays. We will

assume that you have a separate light display (maybe an Arduino
sketch?) that listens to the MIDI and waits for marker meta-messages

(0x06). While JFugue already lets you specify a marker using the #

character (as described in Section 2.6), we will use this as an example for

creating a new subparser function.

Here is an example of what we want to express in Staccato:

Player player = new Player();

player.play(":Lights(RED)");

First, the subparser function needs to implement the SubparserFunction

interface:

public class LightsFunction implements SubparserFunction {

Like the preprocessor function, the subparser function is also intended
to be a singleton, so the following code should look familiar:

 private static LightsFunction instance;

 public static LightsFunction getInstance() {

 if (instance == null) {

 instance = new LightsFunction();

 }

 return instance;

 }

The Complete Guide to JFugue

 85

 private LightsFunction() { }

 @Override

 public String[] getNames() {

 return NAMES;

 }

 public static String[] NAMES = { "LIGHTS" };

The apply() function in a subparser function is different than in a

preprocessor function. Here, the apply() function does not return a

value. Instead, it is expected to fire an event through the parser.

 @Override

 public void apply(String parameters, StaccatoParserContext

context) {

 String[] params = parameters.split();

 if (params.length == 1) {

 context.getParser().fireMarkerParsed(params[0]);

 }

 }

That’s all there is to creating your own subparser function. Like the
preprocessor function, you need to add this through the

FunctionManager:

FunctionManager.getInstance()

.addSubprocessorFunction(ArpeggiatedChordFunction.getInstance());

Subparsers May Populate Context

Populating context is not a requirement for classes that implement

Subparser, but if you create a new subparser, you may want to create
public static void populateContext(StaccatoParserContext context)
if you wish for your subparser to place its own dictionary definitions and

other information within the context object. IVLSubparser does this to

populate the word PERCUSSION and the names of instruments,

TempoSubparser does this to place definitions of words like ADAGIO, and

NoteSubparser does this to populate the names of percussion notes. If

you want to call your own populateContext() method in a new

subparser, you will have to edit the StaccatoParser constructor.

The Complete Guide to JFugue

 86

3.5

Instructions

One of the important features of Staccato is that the music string is
readable to humans as well as understandable to a computer program.

As you saw in previous sections, especially the section on MIDI
Controller Events, there are a lot of things that you can express in a

Staccato string aside from basic musical notes. Unfortunately, these do
not lend themselves to easy readability. If you see a Staccato string with

the command :CON(7,2), can you immediately identify the purpose of

this musical event and the effect that the event is going to have on the
music? My guess is that you would probably have to look up what MIDI

Controller Event 7 is, and what a value of 2 does to the event. But you
shouldn’t have to do that. Enter Staccato Instructions. (Controller 7 is

Coarse Volume, by the way).

Understanding Instructions

Instructions in Staccato let you replace this:

player.play(":CON(65,127) :CON(5,70) C5h D5h E5h");

With this:

The Complete Guide to JFugue

 87

player.play("{turn portamento on} {set portamento time to 70} C5h

D5h E5h");

Personally, I’m a huge fan of that second line. Now when you read this
music in the future, or when someone else sees your music, your

intentions are quite clear, and it is easy to see what the Staccato string is
trying to do.

Instructions work for any musical command, but MIDI controller events
provide the best example (and probably the best use case) since there are

so many of them and activating controller events by MIDI values alone is
cryptic.

One downside of using instructions is that instructions are pieces of
code, whereas Staccato strings are not code-specific objects. In an ideal

world, you should be able to share Staccato strings with other people
and they should be able to play that music with no code changes. Of
course, since the interpretation of instructions is based on code that is

not strongly connected to the Staccato string itself, music with
instructions may not sound as the author intended if the instruction
code is not also shared. The Staccato parser will ignore instructions that

it does not know, so the music will at least be playable, but not with the
adjustments that the instructions would have made.

In processing the Staccato string, Instructions are preprocessed, which
means that the instruction is re-written as valid Staccato commands

before the Staccato string is parsed. This means that ParserListeners

will not know about Instructions, and there is no onInstructionParsed()

method in ParserListener.

Creating Instructions

There are several types of instructions that you can create depending on

the effect you would like to produce.

Simple Instructions

The first type of instruction is a simple substitution: When the parser

sees A, replace it with B. In this case, A and B are the two parameters

given to the addInstruction() method, like so:

InstructionPreprocessor ip =

InstructionPreprocessor.getInstance();

ip.addInstruction("when you see this", "replace it with this");

When you create a Staccato string that looks like this:

"{when you see this}"

The Complete Guide to JFugue

 88

You will get output like this:

"replace it with this"

Which is much more interesting if your key and value are musical:

ip.addInstruction("pump up the volume", ":CON(7,127)");

This capability is not significantly different from Replacement Maps,
although the implementation is slightly different. Replacement Maps are

purely mappings between a String key and a String value; Instructions
are a mapping between a String key and an Instruction value, and in this

case, the InstructionPreprocessor wraps a simple String into an

anonymous Instruction that just returns the String. Instructions become

more interesting when using actual Instructions, as you will see in the
next several sections.

Switch Instructions

There are some musical instructions that you just want to turn on and
off. The portamento and vibrato effects are two examples of this. Usually,
a value of 127 turns on a MIDI controller event, and a value of 0 turns it

off, but this is not always necessarily the case.

Let’s take a look at portamento for our example. You’d like to be able to

say:

player.play("{portamento on} C5h D5h E5h");

You’ll need to add an Instruction that keys on the phrase “portamento”,

then provide a snippet of valid Staccato code that includes a dollar sign
to represent where a value should be placed, then two values: the off
value and the on value for the switch. When a switch instruction is

processed, the processor looks for the word “on” or “off”, selects the
appropriate value, and places that value where the dollar sign is in the

Staccato string. The first value provided as a parameter to the Switch is
the “off” value; the second value is the “on” value.

InstructionPreprocessor ip =

InstructionPreprocessor.getInstance();

ip.addInstruction("portamento",

 new Instruction.Switch(":CON(65,$)",0,127));

Choice Instructions

A choice instruction lets you use one set of words as a key to specific set
of choices, then the last value provided in the instruction is a number

representing the choice of result you would like to use. This is useful
when you have different pieces of music that all belong to the same

category—say, a drum beat and its several variations, or different ways of

The Complete Guide to JFugue

 89

singing a chorus for a given song. You may think of think of these as
different variations of a theme.

To create this type of instruction, provide an Instruction.Choice object

that is constructed with each of the values you would like to choose

among. You can also use the getChoices() method to get the

List<String> of choices, to which you can add new choices directly. The

number you pass into the instruction itself will be the index into the list
of the thing to play. For example:

InstructionPreprocessor ip =

InstructionPreprocessor.getInstance();

ip.addInstruction("trio", new Instruction.Choice("c g e", "d f

a", "g b e"));

player.play("{trio 0}"); // Will play "c g e"

player.play("{trio 1}"); // Will play "d f a"

player.play("{trio 2}"); // Will play "g b e"

Instructions in which the Last Word or Number is a Value

Sometimes, you may just want the final value of an instruction to be the
parameter for a Staccato command, like a MIDI controller event, the

duration of a note, the selection of an instrument, and so on. In this
case, the last value passed to the instruction—that is, the text just before
the final curly brace, and after the final space—is used to replace a

dollar-sign character in the text you provide to the constructor of

Instruction.LastIsValue.

Note that for any of these instructions, the key is triggered if the

instruction starts with the specified key; words between the key and the
final value are ignored. This can be useful for additional commentary or
just goofing off, or especially for including words like “to” (or “a”/“an”)

that make the instruction sound or read better.

// This will play ":CON(7,2) Cq I[Piano] Eq"
InstructionPreprocessor ip =

 InstructionPreprocessor.getInstance();

ip.addInstruction("volume", new

 Instruction.LastIsValue(":CON(7,$)"));

ip.addInstruction("change instrument", new

 Instruction.LastIsValue("I[$]"));

player.play("{volume should now be set to the glorious value of

2} Cq {change instrument to Piano} Eq");

Last Value Instructions in which the Value is Split over Multiple Commands

There may be times when you want to take a single value provided to an

Instruction, do some processing on that value, and use the processed
values as parameters for multiple Staccato commands. The primary use
case for this, which is demonstrated below, is specifying a value for

The Complete Guide to JFugue

 90

controller events that have low-byte and high-byte values, but I would

argue this isn’t the best example to use because the :ControllerEvent

subprocessor function has a more elegant way to deal with low-

byte/high-byte controller events. Nevertheless, I will proceed with the
example, although I encourage you to think of more creative applications
of this capability.

There are a number of MIDI capabilities that are controlled my multiple
controller events. For example, “volume” is really a combination of

Coarse Volume (Controller 7) and Fine Volume (Controller 39). But you
may want to think about volume as a number between 0 and 16384

rather than a combination of 128 degrees of coarse volume and 128
degrees of fine volume. To do this, you can create a slightly more

complicated instruction object called Instruction.LastIsValueToSplit,

which takes a number of Staccato commands that the instruction will

replace—each with a specific string that will be replaced by the value or
by the result of a computation on that value—and an instance of

Instruction.Splitter. The Splitter’s splitInstructionParameter()

method takes the value provided in the instruction and returns a

Map<String, String> in which each replacement string is the key, and

the value to replace is the value.

At this point, you probably either want to read that last paragraph again
or just declare that you’ll never need to do anything this complex. Let me

try to break it down differently:

1. Start with a single capability that requires multiple commands.
We’ll use “full volume” as an example.

2. For “full volume”, we’ll accept values of 0 through 16384. For any
given value, MIDI Controller 7 (Coarse Volume) will be set to

value/128, and MIDI Controller 39 (Fine Volume) will be set to

value%128 (that’s modulo).

3. We’ll need in Instruction.LastIsValueToSplit to do this. The

instruction will be keyed by the phrase, “set total volume”. That

phrase will be replaced with the following Staccato snippet:
":CON(7,$1) :CON(39,$2)"

4. We need the Instruction.Splitter to replace the $1 with

value/128, and the $2 with value%128. (We could use any string,

but strings that start with dollar signs seem like something you
would not have in the rest of the Staccato command.)

5. When Instruction.Splitter is asked to make its calculations, it

needs to return a Map<String, String>, and these will be its two

entries: ($1  value/128) and ($2  value%128). (And, since the

The Complete Guide to JFugue

 91

values need to be String objects, those integer results (actually,

they should be bytes) need to be converted to Strings.)

Hopefully, that makes this capability more clear! Let’s see this in action.

// This will play ":CON(7,6) :CON(39,64) C D E"

InstructionPreprocessor ip =

InstructionPreprocessor.getInstance();

Instruction.Splitter splitter = new Instruction.Splitter() {

 public Map<String, String> splitInstructionParameter(String

value) {

 Map<String, String> retVal =

 new HashMap<String, String>();

 retVal.put("$1", ""+Integer.parseInt(value) / 128);

 retVal.put("$2", ""+Integer.parseInt(value) % 128);

 return retVal;

 }

};

ip.addInstruction("set total volume", new

 Instruction.LastIsValueToSplit(":CON(7,$1) :CON(39,$2)",

 splitter));

player.play("{set total volume to 1600} C D E");

Using Patterns as Instructions

You may also use a Pattern (or anything that implements

PatternProducer) as an instruction. This allows you to provide a string

name that is mapped to something that generates a pattern. One
example that demonstrates the utility of this is specifying the structure

of a song, where each Instruction can be turned into a set of notes. For
example, you can have this string:

"{intro} {verse} {chorus} {verse} {chorus} {breakdown} {verse}

{outro}"

Then, you could define a set of Patterns for each part of the song—and
the content of those Patterns could be different each time you run your
program. You would then create a couple of simple instructions as so:

InstructionPreprocessor ip =

InstructionPreprocessor.getInstance();

ip.addInstruction("intro", introPattern);

ip.addInstruction("verse", versePattern);

ip.addInstruction("chorus", chorusPattern);

ip.addInstruction("breakdown", breakdownPattern);

ip.addInstruction("outro", outroPattern);

Now when you parse the structure of your song, the
InstructionPreprocessor will fill in all of the instructions with the
patterns you specified! This seems easier and more intuitive than

The Complete Guide to JFugue

 92

creating a new pattern by adding together other patterns. And if you
want to change the structure of your song, it’s quite easy to do—just

change that one line describing the structure.

Creating Your Own Instructions

In addition to the variety of instructions that JFugue provides out of the

box, it is easy to create your own instruction. Simply create a class that

implements Instruction and overrides the onInstructionReceived

(String[] instructions) method.

One use of this would be instructions for which you plan to do your own
parsing. For example, suppose you aree writing a parser for Indian

Carnatic music, and you would like to specify both the note and the
octave for a particular sound. If you simply use a Replacement Map to

replace Carnatic notes with a microtone frequency, you will only be able
to replace one octave. Instead, you could create an Instruction that takes

the note and the octave, like {R1 3} for R1 in the 3rd octave. You would

then be able to create a microtone frequency specific to this combination.

As another example, suppose you are interested in creating music that
incorporates segments of DNA converted to musical instructions. You

could say something like this:

"{intro} {DNA gacagattacagcgatgatg} {chorus} {outro}"

Your DNA Instruction, which would key on the string “DNA” and which

would receive the DNA sequence through onInstructionReceived(),

could then do computations on the DNA sequence and put the resulting
music back into the Staccato string.

Dealing with Instructions that Start with the Same Words

Suppose you have two instructions:

1. {the greatest instruction}

2. {the greatest instruction to ever}

And in your play() statement, you have this:

player.play("{the greatest instruction to ever exist}");

Which of the two instructions do you think will be triggered?

The Instruction preparser looks for instructions starting with the longest

name first. In the example above, Instruction #2 would be found first,
and it would be the instruction that is triggered here. Yes, Instruction #1
starts with the same phrase, but it is shorter in length and, since the

longer instruction matches first, Instruction #1 will not be triggered.

The Complete Guide to JFugue

 93

Part 4

Music Theory with
the JFugue API

The Complete Guide to JFugue

 94

Variation 30 of Johann Sebastian Bach’s “Goldberg Variations” (BWV 988)

The Complete Guide to JFugue

 95

4.1

Introduction to Music Theory in JFugue

In the previous sections, you have learned how to program music directly

into JFugue using Staccato. JFugue also provides a set of classes for
working with music theory. Even if you do not create music with JFugue,
you may find the music theory classes useful for your application.

The music theory capabilities in JFugue are interconnected. A key can be

specified as a set of intervals. A scale contains a set of intervals. A key
can be made from a scale, and a chord can be made from a key or set of
intervals. A chord progression specifies a set of chords. And, of course,

chords are composed of notes. All of these levels of music theory work
together seamlessly in JFugue.

In addition, all of these capabilities work in accordance with common

music notation. If you have worked with intervals before, you know that,

for example, a minor interval is represented like "1 b3 5". If you have

worked with chord progressions, you may be familiar with the “ii-V-I”

turnaround. JFugue’s Intervals and ChordProgression classes let you

use that exact notation. For example:

Intervals intervals = new Intervals("1 b3 5");

The Complete Guide to JFugue

 96

ChordProgression progression = new ChordProgression("ii-V-I");

In fact, chords in JFugue are defined using Intervals. For example, the

minor chord that you get when saying Player.play("Cmin") is defined in

Chord.java as Intervals("1 b3 5").

Similarly, a scale is defined using intervals, a key can be created from a
scale and a root note, and a chord can be created from a key and vice
versa—which is somewhat non-traditional but interesting—as well as

from intervals.

There are additional capabilities as well: chords can be inverted, intervals

can be rotated, and chords, chord progressions, and keys can be given

root notes. And importantly, all of these implement PatternProducer, the

interface in JFugue that indicates that a class has a method called

getPattern(), which means that all of these elements can be added to a

JFugue Pattern, or even sent directly to player.play().

Here is a complete one-line program that plays a “ii-V-I” chord

progression in the key of E Minor:

new Player().play(new ChordProgression("ii V I").setKey("Emin"));

Probably the greatest thing about JFugue’s music theory classes is that
they let you write programs that use musical elements as top-level
objects. In other words, you can write programs that talk directly about

chords and chord progressions and keys and scales and intervals by
referring to those things directly, instead of referring to something like
arrays and strings and other data types that might encode musical

elements but do not lend themselves to writing clear, concise musical
programs.

Author’s note: When I wrote JFugue 5—putting aside previous versions
of JFugue and starting from an entirely clean slate—the first class I

wrote was Intervals. These music theory classes are fundamental to the

way you can work with and express music using the JFugue API. I’m
excited to bring these capabilities to you in JFugue 5. Enjoy!

The Complete Guide to JFugue

 97

4.2

Notes

The fundamental musical element is the note. At its most basic level, a
note represents a tone, like Middle-C. One step away from the basics and

we can have notes with duration; a further step and we can have notes
with dynamics like on and off velocities. As a sequence, notes create a

melody. In parallel, notes create harmony. This chapter will explain notes
in more detail.

Staccato vs. the JFugue API

In previous sections, you learned how to create notes in JFugue through

Staccato. If you are writing music in JFugue, you will find it much more
expedient to specify notes using Staccato strings instead of, say, creating

Note objects for each note that you would like to add to a song. Behind

the scenes, those Staccato strings are being turned into Note objects

anyway.

But you might also want to use notes in your own programs. For
example, you may be interested in getting all of the notes for a chord

progression. Or you may be interested in writing programs, JFugue

parsers, or parser listeners that deal with Note objects. If so, this section

is for you!

The Complete Guide to JFugue

 98

JFugue takes advantage of the Staccato notation to let you define a Note
object. You can create a Note using a Staccato string, like this:

Note note = new Note("C"); // Middle-C

(This works by parsing the string using the JFugue’s NoteSubparser)

You can also specify a note using its MIDI value:

Note note = new Note(60); // Also Middle-C

If you read the section on notes in Staccato, then you have already seen

the following table:

Octave C C# D Eb E F F# G G# A Bb B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 70
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

Table 9. MIDI note values.

Middle-C is marked in green on the left side if the table.

You can do all sorts of things with a note like this – you can play it with

player.play, you can add it to a Pattern, you can use it as a root for a

chord, and so on.

The numeric value for a note can be obtained using getValue() and, of

course, there is a corresponding setValue(byte value) method. There is

also a changeValue(int delta) method, which takes an amount, either

positive or negative, by which to change the current value.

Default Octave on Notes

In JFugue, notes can serve two purposes. They can be an actual note

that you expect to play – e.g., player.play("C") – or they can be a logical

note used in a manner consistent with music theory – e.g.,

chord.setRoot("C"). In the first case, the note needs to have a default

octave; in the second case, the octave may not matter. The Note class

keeps track of whether an octave has been explicitly set for note. You
mostly only need to know this if you are ever diagnosing whether two
notes are the same.

To demonstrate, notice that these two lines are false:

The Complete Guide to JFugue

 99

new Note("C").equals(new Note("C4")); // Returns false!

new Note("C").equals(new Note("C").setOctave(4)); // False!

But these two lines both return the same value:

new Note("C").getOctave(); // Returns 4

new Note("C4").getOctave(); // Also returns 4

So what is the difference? Here it is:

new Note("C").isOctaveExplicitlySet(); // Returns false

new Note("Cq").isOctaveExplicitlySet(); // Returns true

There is a similar discussion about default durations, so let’s turn there

for further explanation about why this is true.

If you are making a new note based off an existing note, and you want
the two notes to share the same octave settings, use

useSameExplicitOctaveSettingAs(Note existingNote).

Default Duration on Notes

If you play the note, you’ll hear the note that you expect. But you may

also notice that the note has an end (it does not play forever), and this is
because the note has a default duration, set to a quarter duration. It is
worth knowing how the default is implemented, because a note with a

default duration is slightly different than a note with a duration that has
been explicitly set, even if the set duration is 0.25.

To demonstrate, notice that these next two lines are false:

new Note("C").equals(new Note("Cq")); // Returns false!

new Note("C").equals(new Note("C").setDuration(0.25d)); // False!

But these two lines both return the same value:

new Note("C").getDuration(); // Returns 0.25

new Note("Cq").getDuration(); // Also returns 0.25

So what is the difference? Here it is:

new Note("C").isDurationExplicitlySet(); // Returns false

new Note("Cq").isDurationExplicitlySet(); // Returns true

And now, why is this important?

The importance is that it allows us to work with notes, and even play the
notes, and take advantage of the note’s default duration, while not

polluting the other music theory elements with a duration if one has not
been explicitly specified.

The Complete Guide to JFugue

 100

For example, in the next section you will learn about chord progressions,
and you can provide a chord progression with a root note, then get the

pattern represented by the chord progression. To get the pattern, JFugue

generates a string representing each note, and if the Note class returned

whatever duration was associated with the note, including a default
duration, then this:

ChordProgression cp = new ChordProgression("iv v i");

Pattern pattern = cp.setKey("Cmaj").getPattern();

…would return F4minq G4minq C4minq despite that we did not use q or

octave 4 in the key. Instead, we would like to get back Fmin Gmin Cmin,

because then we can what we want with the elements in the pattern
without dealing with an extraneous duration that had not been specified.
But we still want to be able to play the chord progression, even if they

key we provided did not contain a duration.

If you happen to be creating a note and you want the new note to reflect
the same duration as an existing note, and whether the duration was

explicitly set, please use the useSameDurationAs(Note existingNote)

method.

“Note On” and “Note Off” Velocities

Fortunately, there is less to say about velocities than there is about
durations! The Note class has getters and setters for “note on” and “note

off” velocity. When the note is being represented as a pattern, velocity is
not added to the string if they are the same as the default values, which

are defined as MidiDefaults.MIDI_DEFAULT_ON_VELOCITY and

MidiDefaults.MIDI_DEFAULT_OFF_VELOCITY, unless you change those

settings with DefaultNoteSettingsManager (which will be discussed a bit

later in this section).

Note States: isRest, isPercussionNote

A note has a lot in common with a rest: they both have duration, they

can both be harmonic or melodic. For this reason, the Note class is also

used to represent rests. If a note is a rest, setRest(boolean) and

isRest() should be called as necessary. To easily create a Note that is a

rest, use the static method Note.createRest(double duration) or the

Note.REST constant, which provides a rest with default duration.

A note can also represent a percussion instrument when used in the 10th

MIDI channel (JFugue’s V9). While these are truly notes, the Note class

keeps track of whether a note is a percussion note so it knows how to

represent that note in a string:

The Complete Guide to JFugue

 101

new Note(56).getPattern(); // Returns "G#3"

new Note(56).setPercussionNote(true).getPattern(); // "[COWBELL]"

Melodic and Harmonic Notes

Aside from belonging to a chord, a note can be part of a harmony. For

example, in Staccato you can say E+G to play those two notes together.

This is represented by the Note class with two separate instances of Note.

In the first instance, the note is marked as a first note (so isFirst()

returns true) and both notes are marked as harmonic (so isHarmonic()

returns true). When a parser or parser listener that manages time comes
across first notes, it knows to remember the time that the note sounds;

and when it comes across subsequent harmonic notes, it knows to move
the time pointer back to when the first note started, so these two (or

more) notes can occur at the same time.

Within a harmony, it is possible to have some notes that are melodic—for

example, the G and C in Eh+Gq_Cq are melodic. In this case, E is the first

note, G is a harmonic note, and C is a melodic note.

Start and End of a Tie

A note can indicate the start of a tie, in which case it is meant to keep
playing until an end note of the same tone is encountered, or it can be

the end of a tie, which ends a tie that started with a note of the same
tone. The Note class provides getters and setters for indicating that a

note is the start or end of a tie.

Position in Octave

getPositionInOctave() essentially returns tone_value % 12 and lets

you know that no matter what note and octave has been specified, a C is
in position 0, C# is 1, and so on through B, which is position 11.

If you would prefer to use a constant in your code instead of the number
12 to represent the number of notes in an octave, you can use

Note.OCTAVE, which is a final public int set to 12. You can also use

Note.MIN_OCTAVE and Note.MAX_OCTAVE (0 and 10, respectively) in your

code.

String Arrays for Notes

The Note class contains several public static String arrays that you may

find useful in your programming. The NOTE_NAMES_COMMON array contains

string representations of each of the twelve notes in an octave:

The Complete Guide to JFugue

 102

public final static String[] NOTE_NAMES_COMMON = new String[] {

"C", "C#", "D", "Eb", "E", "F", "F#", "G", "G#", "A", "Bb", "B"

};

There are two additional arrays, NOTE_NAMES_SHARP and NOTE_NAMES_FLAT,

both of which use only sharps or only flats respectively in the accidental
notes.

public final static String[] NOTE_NAMES_SHARP = new String[] {

"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"

};

public final static String[] NOTE_NAMES_FLAT = new String[] {

"C", "Db", "D", "Eb", "E", "F", "Gb", "G", "Ab", "A", "Bb", "B"

};

The PERCUSSION_NAMES array contains a list of strings representing

percussion sounds. These are the same strings that the NoteSubparser

uses to interpret percussion names used in Staccato music. For example,

you’ll find that PERCUSSION_NAMES[2] is SIDE_STICK. Just remember to

add 35 to the array index to match the MIDI note value of that

percussion sound – for example, SIDE_STICK corresponds to MIDI Note

37.

Sorting Notes

Suppose you would like to sort an array of Note instances – maybe by

their duration, or their octave, or their place within an octave, or any

other feature of the notes. The Note class provides a static method,

Note.sortNotesBy(), that takes an array of Note instances and an

instance of Note.SortingCallback, which is an interface with one

method, getSortingValue(), that returns the value of the property that

you wish to sort on.

Chord.getChordFromNotes(Note[] notes) makes use of this feature to

identify which note in an array of notes should be the bass note for the
chord. Here is the code:

 Note.sortNotesBy(notes, new Note.SortingCallback() {

 @Override

 public int getSortingValue(Note note) {

 return note.getValue();

 }

 });

In this case, the notes are sorted on their numeric value, which equates

to their MIDI number (where Middle C is 60). The sortNotesBy() method

uses a standard BubbleSort algorithm to arrange the notes based on the

value returned by getSortingValue().

The Complete Guide to JFugue

 103

Here is the list of the getters in the Note class that you might consider
using for your own sorting purposes:

getDuration()

getMillisecondDuration()

getOctave()

getOffVelocity()

getOnVelocity()

getPositionInOctave()

getValue()

Getting Strings and Other Values About Notes

There are a number of ways to generate strings from a Note, and various

parts of the JFugue codebase all depend on at least one of these. You
should have access to these, too!

- getOriginalString() returns the actual string that was used to

create the Note.

- getPattern(), which is an implementation of the PatternProvider

interface, creates a Pattern which is composed of

toStringWithoutDuration() concatenated with

getDecoratorString().

- getPercussionPattern() first checks if the Note’s value is within

the range of MidiDefaults.MIN_PERCUSSION_NOTE and

MidiDefaults.MAX_PERCUSSION_NOTE. If the note value is outside of

this range, this method returns getPattern(). Otherwise, this

method returns a concatenation of the value of the static method

Note.getPercussionString(getValue()) and

getDecoratorString() as a Pattern.

- Note.getPercussionString(int value) is a static method that

returns the name of a percussion instrument (see code two pages
ago) in square brackets. For example, passing a value of 50 would

result in the String [HI_TOM]. If you have a friend named Tom, you

can probably think of an especially cool use for this function.

- getDecoratorString() returns a concatenation of

Note.getDurationString() if isDurationExplicitlySet() returns

true, and getVelocityString().

- getVelocityString() returns only the velocity portion of the Note.

The String contains the on velocity only if the value is not set to

The Complete Guide to JFugue

 104

the default, and the off velocity only if the value is not set to the
default. If both are set to the default, this will return an empty

string.

- getToneString() returns a String that starts with the static

Note.getToneStringWithoutOctave(getValue()) and only adds an

octave if isOctaveExplicitlySet() is true.

- Note.getToneString(byte noteValue) is a static method that

returns a concatenation of

Note.getToneStringWithoutOctave(noteValue) and noteValue

divided by Note.OCTAVE.

- Note.getToneStringWithoutOctave(byte noteValue) is a static

method that returns NOTE_NAMES_COMMON[noteValue %

Note.OCTAVE].

- toString() returns getPattern().toString().

- toStringWithoutDuration() returns: R if the note is a rest;

Note.getPercussionString(getValue()) if isPercussionNote() is

true, and otherwise, getOriginalString() if the original string is

set or Note.getToneString(getValue()) if it is not.

- Note.getDispositionedToneStringWithoutOctave(int dispose,

byte noteValue) is a static method that uses the dispose value to

determine whether to pull a tone string from NOTE_NAMES_FLAT or

NOTE_NAMES_SHARP. If dispose is -1, the method pulls a name from

NOTE_NAMES_FLAT, otherwise from NOTE_NAMES_SHARP. The index into

the array is noteValue % Note.OCTAVE. No octave is returned.

- Note.getDurationString(double decimalDuration) is a static

method that converts values like 0.5 to h, 0.25 to q, 0.09375 to s.

(dotted sixteenth), 2.5 to wwh, and so on. Or, if it can’t figure out

the math (say it’s given 0.234872), it will return a slash followed by

the decimal value (e.g., /0.234872).

- Note.getDurationStringForBeat(int beat) is a static method that

converts 2 to h, 4 to q, 8 to i, 16 to s, and any other value to /

followed by 1.0 divided by beat.

- toDebugString() is discussed ahead.

Phew, I’m pretty sure that’s all of them.

Since we’re on the topic of interesting results you can get from static
Note methods, there are two other interesting methods that you may be

interested in:

The Complete Guide to JFugue

 105

- Note.getFrequencyForNote(int noteValue) and

Note.getFrequenctForNote(String note) are static methods that

return the frequency, in Hertz, for the given note. For example, A4
returns 440.0.

These frequency-related methods are used most frequently (ha!) with

microtones. For example, MicrotoneManualTest uses

getFrequencyForNote() several times.

Modifying Default Values for Notes

All of that talk about the default duration being 0.25, or the default
octave being 5 for the treble clef and 4 for the bass clef, or default on/off

velocity being 64… well, you can change those things.

DefaultNoteSettingsManager is a static class (you use getInstance() to

access it) with which you can override the default values for octave,

duration, and on/off velocity for your notes.

Keep in mind that these settings happen outside the realm of Staccato,

so if you change the settings and share a Staccato string with someone
else, they will hear different music.

Diagnosing Notes

As you can tell, notes get complicated pretty quickly. You can use the

toDebugString() method to get a string that lists all of the properties of a

note. Going through this string could help you identify why one note
might not be the same as another note when you think they should be

the same note.

The Complete Guide to JFugue

 106

4.3

Chords and Chord Progressions

Chords are harmonies of notes, and chord progressions are melodies of
chords. JFugue provides classes that let you work with both chords and

chord progressions easily, and in a way that is consistent with what you
may already know from music theory.

Creating Chords

To create a chord, call the Chord constructor with a string representing

the chord, which is a root note (e.g., C, Bb, A4, 60) followed by a chord

string (e.g., MAJ, MIN, with more discussed below)

Chord chord = new Chord("Cmaj");

If you do not specify an octave for the root note, JFugue automatically
selects octave 4 (or more correctly, the value returned by

DefaultNoteSettingsManager.geInstance().getDefaultBassOctave()),

which is an octave lower than the default for treble clef notes. In other

words, the code sample above produces a chord in which C4 is the root

note, rather than C5 (Middle-C). If you specify an octave (e.g., C5maj) or

use a note number (e.g., 60maj), the note will be in the octave you expect.

The Complete Guide to JFugue

 107

You can also create a chord by providing the notes that comprise the

chord. You can do this using the static fromNotes method, using one of

the following method signatures:

 public static Chord fromNotes(String noteString)

 public static Chord fromNotes(String[] noteStrings)

 public static Chord fromNotes(Note[] notes)

These are useful functions that do a bit of processing behind the scenes
that allow you to enter notes in any order and get the expected result.

For example, whether you provide C E G or G E C, you’ll get a Cmaj. The

functions also know how to translate the lowest note (not the first note)

into a chord inversion, so E4 G4 B4 C5 will return a C5maj7^.

The functions pay attention to octave and use octave in the returned
chord if the provided notes are given an octave in the first place, and if

the octaves in all of the notes can be used to create a clearly defined

chord octave. For example, we just saw that E4 G4 B4 C5 will return a

C5maj7^. But C, E, G, and B anywhere on the keyboard logically represent

a C-Major 7th chord. For example, E3 F6 B2 C8 is also a Cmaj7, but we

cannot say that it is a Cmaj7 with a particular octave for the root, C

(clearly, these notes do not represent C8maj7). Similarly, E3 F6 E4 F8 B2

C7 C5 also comprise a Cmaj7. In these cases, the chord is returned

without an octave.

The ChordMap

JFugue defines chords using the Intervals class, and the Chord class

contains a chordMap that defines a number of common types of chords.

chordMap contains a bunch of entries like this:

 chordMap.put("MAJ", new Intervals("1 3 5"));

The table below shows all of the chords that JFugue includes in its chord

map. If there are chords that you want to use that you don’t see defined
here, it is easy to add them to the chord map! From anywhere in your
application, simply say something like:

// Add a Power Chord to JFugue!

Chord.addChord("POW", "1 5");

There are a couple of guidelines for creating a chord name:

1. Don’t start the chord name with a number, or it will be
indistinguishable from the root’s octave,

2. Don’t use the slash, angle brackets, square brackets, parentheses,

plus, or underscore in your chord name (instead, use percent, %),

The Complete Guide to JFugue

 108

3. Make sure to test your new chord name to make sure the parser
can parse it correctly.

Common Name JFugue Name Intervals

Major Chords

Major MAJ 1 3 5

Major 6th MAJ6 1 3 5 6

Major 7th MAJ7 1 3 5 7

Major 9th MAJ9 1 3 5 7 9

Added 9th ADD9 1 3 5 9

6/9 MAJ6%9 1 3 5 6 9

7/6 MAJ7%6 1 3 5 6 7

Major 13th MAJ13 1 3 5 7 9 13

Minor Chords

Minor MIN 1 b3 5

Minor 6th MIN6 1 b3 5 6

Minor 7th MIN7 1 b3 5 b7

Minor 9th MIN9 1 b3 5 b7 9

Minor 11th MIN11 1 b3 5 b7 9 11

7/11 MIN7%11 1 b3 5 b7 11

Minor Added 9th MINADD9 1 b3 5 9

Minor 6/9 MIN6%9 1 b3 5 6

Minor Major 7th MINMAJ7 1 b3 5 7

Minor Major 9th MINMAJ9 1 b3 5 7 9

Dominant Chords

Dominant 7th DOM7 1 3 5 b7

Dominant 7/6 DOM7%6 1 3 5 6 b7

Dominant 7/11 DOM7%11 1 3 5 b7 11

Dom 7th Sus DOM7SUS 1 4 5 b7

Dom 7/6 Sus DOM7%6SUS 1 4 5 6 b7

Dominant 9th DOM9 1 3 5 b7 9

Dominant 11th DOM11 1 3 5 b7 9 11

Dominant 13th DOM13 1 3 5 b7 9 13

Dom 13th Sus DOM13SUS 1 3 5 b7 11 13

Dom 7th 6/11 DOM7%6%11 1 3 5 b7 9 11 13

Augmented Chords

Augmented AUG 1 3 #5

Augmented 7th AUG7 1 3 #5 b7

Diminished Chords

Diminished DIM 1 b3 b5

Diminished 7th DIM7 1 b3 b5 6

Suspended Chords

Suspended 2nd SUS2 1 2 5

Suspended 4th SUS4 1 4 5

Table 10. Chords provided by JFugue

The Complete Guide to JFugue

 109

You can also get a list of all of the available chords by using

Chord.getChordNames(), you can find the intervals for a specific chord

using Chord.getIntervals(String chordName), and you can remove a

chord using Chord.remove(String chordName). These methods simply

delegate to the chordMap object, which is a Map<String, Intervals>.

There is also a method that returns the name of a chord if you pass the

set of intervals (of course, this depends on chordMap having an entry in

which the intervals exist). This is Chord.getChordType(Intervals

intervals).

Creating a Chord with a Root and Intervals, or a Key

The Chord class has two other constructors. One takes a root note and a
set of intervals; the other takes a key. And, since a key in JFugue can be
specified using a root note and a scale (which is, at its most basic, a set

of intervals), the behavior behind the scenes is identical for these two
constructors.

To create a C-Major chord with the root and intervals constructor, you
would say:

Chord chord = new Chord(new Note("C3"), new Intervals("1 3 5"));

(You could even pass the Intervals instance from the ChordMap, but that

would only be a more verbose way of doing what you can already do with
the basic constructor introduced earlier.)

Creating a chord with a key is an interesting idea, and I am not sure
whether it is entirely useful in a musical context, but it is easy to do. The
resulting chord will consist of all of the notes in the key. And, you can

also define a key with a chord, in which case the key will consist of all of
the notes in the chord.

Methods on a Chord

Once you have a chord, there are a lot of things you can do with it! Of
course, you can get the notes that comprise a chord:

Note[] notes = chord.getNotes();

And you can get the intervals:

Intervals intervals = chord.getIntervals();

You can change the bass note of a chord, or you can set the inversion
numerically:

chord.setBassNote("E"); // Pass a string or a Note object

chord.setInversion(2); // Now we have a second inversion

The Complete Guide to JFugue

 110

And, of course, you can get the bass note, root note, or inversion:

Note note = chord.getBassNote();

Note note = chord.getRootNote();

int inversion = chord.getInversion();

If you have a chord in which the root does not have an octave (or if you

wish to change the octave of the root), you can use chord.setOctave(int

octave).

Finally, you can do some cool stuff that deserves a section of its own:

doing an operation on all notes that comprise a chord. ChordProgression

has something similar, so we’ll cover this after we introduce chord
progressions in the next section. If you’re curious, skip ahead to the

section titled, “Each Chord As, All Chords As, and Distribute.”

Getting Human-Readable Chord Names

As much as Staccato puts a premium on human-readable music

expression, chords like DOM7%6%11 are not as clear as saying “Dominant

7th 6/11” – but, because a chord like this would contain other characters
with specific meaning in Staccato (in this case, spaces and the slash
character), the chord names need to refrain from using those characters.

However, the Chord class does have a static map between Staccato chord

name and human-readable name, and you can get a chord’s human-

readable string by calling getHumanReadableString() on a Chord

instance. This will return the human-readable name if one exists,
otherwise it will return the original chord string. The returned value

includes the root note. For example, if you create a chord using JFugue’s

MAJ6%9 and then call getHumanReadableString() on it, you will see 6/9

returned, which you can print it for the benefit of your users. If you want
to add your own human readable strings, use the static
Chord.putHumanReadableName(String chordName, String

humanReadableChordName) method.

Creating Chord Progressions

To create a chord progression, call the ChordProgression constructor

with a string representing the chord progression. For example, to specify

a I-IV-V progression, use the following:

ChordProgression cp = new ChordProgression("I-IV-V");

You may use either dashes or spaces to separate the chords.

You can also create a ChordProgression by passing in existing chords

using the two ChordProgression.fromChords() methods, one of which

The Complete Guide to JFugue

 111

takes a string that consists of chords, the other of which takes an array

of Chord objects.

Once you have an instance of a ChordProgression object, you can do

several things with it. You can play it by sending the chord progression

to Player.play(). You can get a pattern from it using getPattern(). You

can get the individual chords from the progression using getChords().

For each of these things, you may first want to set the key in which the

chord progression will be played. To do this, call the setKey(key)

method:

cp.setKey("BbMAJ");

There are two setKey methods: one that takes a Staccato string, which is

parsed behind-the-scenes to create a Key object, and the other is to pass

a Key object directly… and as you’ll learn in the next section, when you

create a Key object you pass a Staccato string to the constructor anyway,

so these are functionally equivalent.

Now you can get the chords in a chord progression. What chords do you
get from a I-IV-V progression in B-flat major? Let’s find out!

Chord[] chords = cp.getChords(); // Bb3MAJ, Eb4MAJ, F4MAJ

When you specify a chord progression, the case that you use is

important. A “ii” chord is different from a “II” chord, for example.

You can also specify diminished chords by adding a “o” or “d” to the end

of the chord (for example, “viio”), and you can add a “7” to the end of a

chord to get a seventh.

Each Chord As, All Chords As, and Distribute

Certain styles of music use chord progressions, but the song itself does
not necessarily use those chords in the given order. For example, a blues

song may have a chord progression of I IV V, but the way that is

actually played for each measure of the song is I I I I IV IV I I V IV

I I.

I I I I

IV IV I I

V IV I I

Figure 13. Blues progression

The Complete Guide to JFugue

 112

If you have a ChordProgression, you can create a blues rhythm with one

additional line of code. Let’s introduce the ChordProgression method

named eachChordAs.

This method takes a string that follows a special format. Within this
string, you refer to each chord in the progression using an index. So, if

you have a I IV V progression, in this string you would refer to I as $0,

IV as $1, and V as $2. This allows you to change the underlying

progression without changing the string passed to eachChordAs. You can

also refer to each chord multiple times in the eachChordAs string. That

blues progression from Figure 13 would be written like this:

ChordProgression cp = new ChordProgression("I IV V")

.eachChordAs("$0 $0 $0 $0 $1 $1 $0 $0 $2 $1 $0 $0");

Pattern pattern = cp.getPattern();

A blues song in two lines of code! How cool is that?!

There’s a sibling method, allChordAs(). Just as eachChordAs() works on

elements of a chord progression, allChordAs() works on elements of a

chord – in other words, the actual notes. Let’s say, for example, that you
want to play each chord in the blues progression as an arpeggio: play the

first note of the chord, then the second, then the third. In this case, the

$0, $1, and $2 indices refer to notes within a chord.

In both eachChordAs() and allChordsAs(), the $x strings are simply

replaced with the element they point to. You can only use single-digit

numbers here. Anything after the index will be appended to the element

that replaces the index. That means, for allChordsAs(), we can say $0i

which will mean, “Play the 0th note as an eighth note.”

Here’s what this would look like in code:

ChordProgression cp = new ChordProgression("I IV V")

.eachChordAs("$0 $0 $0 $0 $1 $1 $0 $0 $2 $1 $0 $0")

.allChordAs("$0i $1i $2i $3i $4i $3i $2i $1i");

Pattern pattern = cp.getPattern();

An arpeggiated blues song in two lines of code! More coolness!

Finally, there is one other method that works across all elements of a

ChordProgression (but not a Chord): distribute(), which takes a string

and applies that string to each Chord in the progression. You would use
this when you want to keep your progression looking clean, but you need

to add something to each element of the progression. A great example is
that arpeggiated blues song. If we really wanted this to sound good, we’d

play the notes up and down (something like C, E, G, A, A, G, E, C) but

The Complete Guide to JFugue

 113

what’s missing from each chord is a 6th note in the 5th position. In other

words, we would want a Cmaj7%6 here. But how do we say that in the I IV

V progression? I7%6 IV7%6 V7%6 would be really messy. So instead, we

can say:

ChordProgression cp = new ChordProgression("I IV V")

.distribute("7%6");

Much cleaner!

In fact, here’s a cool blues song, in technically one line of code that I’ve

split on different lines to make it easier to read. (In addition to showing
chords and progressions, this demonstrates the power of JFugue’s fluent

API, where setters return the object itself so the object can continue to be
worked on):

 new Player().play(new ChordProgression("I IV V")

 .distribute("7%6")
 .allChordsAs("$0 $0 $0 $0 $1 $1 $0 $0 $2 $1 $0 $0")

 .eachChordAs("$0i $1i $2i $3i $4i $3i $2i $1i")

 .getPattern()

 .setInstrument("Acoustic Bass")

 .setTempo(120));

And that’s how we do chords and progressions and patterns and API
calls in JFugue.

(By the way, if you’re interested in that dollar sign replacement

functionality, you’ll find the implementation in ReplacementFormatUtil.

The single static method, replaceDollarsWithCandidates, takes a string

with the $0 .. $9 or $_ entries, an array of PatternProducers to use as

replacements for the numeric indices, and a single PatternProducer for

the underscore replacement. You can use it for your own creations if

you’d like. The Intervals class also uses this capability. You’ll learn

about that next.)

The Complete Guide to JFugue

 114

4.4

Intervals, Scales, and Keys

Scales, keys, and intervals are all closely related in both music theory
and in JFugue. A scale indicates the pitches within an octave and can be

specified using a set of intervals. A key consists of a scale and a root
note.

Intervals

Intervals are fundamental to music theory within JFugue – so much so

that the Intervals class was the first class I wrote for the JFugue 5.0

reboot. This class lets you encode a sequence of arbitrary intervals that
can be used for chords, scales, keys, or even melodies. The intervals are

indicated using a string that consists of numeric whole number degrees,

which may be modified using the flat (b) or sharp (#) characters. For

example, a C-major chord, C-E-G, is indicated by a 1-3-5 interval, or

Intervals("1 3 5"). A C-minor chord, C-Eb-G, is indicated by "1 b3 5".

Notice that when defining intervals, the flat or sharp character comes
before the interval number; this is different than a Staccato string in

which the flat or sharp comes after a note (F# or Eb, for example) but is

consistent with interval notation traditionally used in music theory.

The Complete Guide to JFugue

 115

You can also create a set of intervals from a set of notes using the static

Intervals.createIntervalsFromNotes() methods. There are three flavors

that let you use a Pattern, a String of notes, or a Note[]. For example,

Intervals.createIntervalsFromNotes("C E G") gives a 1-3-5 interval.

The Intervals class contains two maps which you may find useful in

your programming. One is a map between whole number degrees to
halfsteps; the other is a map between halfsteps to whole number degrees.

When you create an interval like "1 3 5", you are using whole number

degrees to indicate the distance from the root to the other notes.
Internally, those whole number degrees are converted to halfsteps (0, 4,
and 7) to create the actual notes. If you would like to access these maps,

which are defined as statics in the Intervals class, they are

Intervals.wholeNumberDegreeToHalfsteps and

Intervals.halfstepsToWholeNumberDegree. You can also get the

halfsteps for the values in an Intervals class using getHalfstepArray(),

which returns an int[] consisting of the halfsteps for each whole

number degree in the interval. There is also a static convenience method,

Intervals.getHalfsteps(String wholeNumberDuration), which will

convert a string like "##5" or "b3" to the corresponding number of

halfsteps. This uses another static convenience method,
Intervals.calculateHalfstepDeltaFromFlatsAndSharps(String

wholeNumberDuration), which returns an int counting the number of

sharps or flats in the string, returning a negative number for flats or a

positive number for sharps. "##5" will return +2, "b3" will return -1.

Like many classes in JFugue, Intervals is a PatternProducer, so you

can call getPattern(), but first you must set the root of the interval

using setRoot(Note root) or setRoot(String rootString). Intervals is

also unique in that it is a NoteProducer, which means you can get a list

of notes from the class using getNotes() – again, you must set a root

first (behind the scenes, getNotes() calls getPattern()).

You can find the size of a set of intervals – that is, the number of whole

number degrees in the interval – using getSize(), and you can get the

interval at a given index by using getNthInterval(int n). For example,

getNthInterval(1) on "1 3 5" will return 3 (the index is zero-based).

Intervals can be rotated using rotate(int n), where n is the number of

front-to-back rotations to perform on the interval string. "1 3 5 7 9 13"

(a Major 13th) rotated 3 times will result in an interval consisting of "7 9

13 1 3 5".

Remember ChordProgression’s eachChordAs() and allChordsAs()

methods? The Intervals class has something similar, which is simply

called as(). Like the similar methods in ChordProgression, as() takes a

string that contains dollar signs with numbers that indicate an index

The Complete Guide to JFugue

 116

into the interval, or $_ which indicates all notes in the interval. The

return value from as() is the Intervals instance itself because of the

fluent API, but when you call getPattern() after calling as(), you will get

a completed version of the string you sent in.

Here are two examples:

new Intervals("1 3 5").setRoot("C").as("$_i $0q $1h

$2w").getPattern();

// Returns "C5i E5i G5i C5q E5h G5w"

new Intervals("1 3 5").setRoot("C").as("$0q. $1q $2h");

// Returns "C5q. E5q G5h"

Scale

A Scale in JFugue is a simple class that consists of an instance of
Intervals, an optional name, and a value that indicates whether the scale

is a major or minor scale (although this may be overly simplistic, given
the range of possible scales).

Whether a scale is a major or a minor can get set using

setMajorOrMinorIndicator(byte indicator) which takes a values of

Scale.MAJOR_INDICATOR or Scale.MINOR_INDICATOR. There is a

corresponding getter, getMajorOrMinorIndicator(), which returns the

same values.

The Scale class also defines a few scales:

 The Major scale, Scale.MAJOR, consisting of Intervals("1 2 3 4 5
6 7")

 The Major scale, Scale.MINOR, consisting of Intervals("1 2 b3 4
5 b6 b7")

 The Circle of Fifths, Scale.CIRCLE_OF_FIFTHS, consisting of
Intervals("1 2 3b 4 5 6 7b")

Key

Like the Scale class, the Key class in JFugue is also simple. It lets you

specify a Key using either a roote note and a Scale (which we just

learned is basically a wrapper for Intervals), a Chord (which is

interesting! But a chord is a root note and a set of Intervals), or a

String key signature using Staccato notation – for example, "F#MAJ" or

"Kb", where the second method lets you just plop in the number of flats

or sharps you see in sheet music and JFugue will arrive at the correct

key. This is discussed in more detail in Section 2.6.

The Complete Guide to JFugue

 117

Part 5

Players and Parsers

The Complete Guide to JFugue

 118

The score of “Il Gran Mogol,” a recently discovered flute concerto by Antonio Vivaldi.
Identified in the National Archives of Scotland by Andrew Wooley.

For more information, see http://www.nas.gov.uk/about/101007.asp

The Complete Guide to JFugue

 119

5.1

Players

So far in this book, you have seen many examples of playing music using

the Player class. In this chapter, you will learn more about how the

Player class works, and the other types of players that you can use to

play your music in different ways. JFugue provides two players: a
managed player, which is the basic one that you have seen so far and
that can also be used to stop, pause, and otherwise manage playback

(great for playing back a known song), and a real-time player that can
accept musical instructions added dynamically (great for user interfaces
and interactive instruments).

The Player

You’ve already learned the most-used method of the Player class:

player.play(). This is clearly a central part of JFugue! The play()

method can take a String or any PatternProducer (which is an interface

that consists of a single method: getPattern()). You can also pass an

array of Strings or PatternProducers (but not a combination of both) to

the play() method.

Player provides the default capability that makes it so easy to create

music in JFugue: it uses the StaccatoParser to turn strings into musical

The Complete Guide to JFugue

 120

events, and it sends these events to a MidiParserListener. The result is

that you hear your text like "C D E F G A B" turn into music. Of course,

JFugue lets you connext any Parser to any ParserListener, as you will
learn in this section of the book. Player simply provides the most
common combination of Parser and ParserListener that results in

immediate and enjoyable results. That code essentially looks like this:

StaccatoParser staccatoParser = new StaccatoParser();

MidiParserListener midiParserListener = new MidiParserListener();

staccatoParser.addParserListener(midiParserListener);

When you call play() with a Staccato string, Player calls the parse()

method on staccatoParser, then gets the resulting MIDI Sequence from

midiParserListener:

 staccatoParser.parse(pattern);

 return midiParserListener.getSequence();

The sequence is passed to a MIDI Synthesizer and the music is played. In
fact, it is useful to understand that Player first calls these methods to
parse all of the Staccato and turn it into MIDI, and then it plays the MIDI

sequence. Parsing Staccato into MIDI happens quickly; playing the
sequence takes the actual duration of the song.

There are two other capabilities that Player provides. The first is that you

can simply get a MIDI Sequence using getSequence(), which will take

the same parameters as play(). Second, you can use the delayPlay()

method to play the given music in the future, specified by a delay in
milliseconds. This will create a new thread that first sleeps, then plays

your music, again specified as either s String, a PatternProducer, an

array of Strings, or an array of PatternProducers. This is useful when

you are playing with the closest thing JFugue has to time travel. You’ll

read about the Temporal ParserListener-Player in this section.

Behind the scenes, Player delegates all of its playing activity to a class

called ManagedPlayer. What’s a ManagedPlayer, you ask? Good question.

The Managed Player

ManagedPlayer actually handles the heavy lifting for Player, but it is

something that you do not need to know about unless you want to
provide the users of your code or applicaction with the ability to stop,

pause, resume, and seek musical playback. ManagedPlayer provides all of

those capabilities, and it maintains state so it knows whether the

playback is started, finished, or paused. To get the ManagedPlayer, use

player.getManagedPlayer().

The Complete Guide to JFugue

 121

You can also create a ManagedPlayerListener to listen to your

ManagedPlayer. This will let you know when the ManagedPlayer has been

started, finished, paused, resumed, or when a specific tick value is
accessed via seek.

ManagedPlayer lets Player have a clean API: the Player class has a

couple of play() methods, and that’s about it. It also consolidates

starting/pausing/resuming/etc. in one place in case other players—

either ones that are introduced in future versions of JFugue or ones that
you create—can do whatever is necessary in the player itself but still

hand off the managed capability to ManagedPlayer.

The state that the ManagedPlayer is in can be determined by callbacks to

a ManagedPlayerListener (e.g., onStarted(), onPaused()) or by querying

the ManagedPlayer using isStarted(), isPaused(), or isFinished(). A

sequence is not in any of these three states before start() is called.

When start() is called, isStarted() returns true. Whenever pause() is

called, isPaused() returns true, and calling resume() leads to isPaused()

returning false. When the sequence finishes, isFinished() will be true.

isStarted() will only return false when the ManagedPlayer is first

created and start() has not been called, or when reset() has been

called.

The table below summarizes the methods in ManagedPlayer that let you

manipulate the playback of a sequence:

ManagedPlayer method started paused finished Fires this event in
ManagedPlayerListener

start(Sequence seq) True False False onStarted(Sequence seq)

pause() - True - onPaused()

resume() - False - onResumed()

seek(long tick) - - - onSeek(long tick)

finish() - - True onFinished()

reset() False False False onReset()

ManagedPlayer can also tell you the length of a sequence in ticks sing

getTickLength() and the current tick position usig getTickPosition().

Both of these methods delegate to the Java Sound Sequence instance

that is playing the music.

There is one final thing to mention about ManagedPlayer: It uses a

sequener provided by SequencerManager and a synthesizer provided by

SynthesizerManager. Read ahead for more on these classes.

The Complete Guide to JFugue

 122

The Realtime Player

The player that you’ve learned about up to this point is great for when

you already know what music you want to play. In other words, JFugue
generates a MIDI Sequence from your Staccato string and sends it to
Java Sound’s Sequencer. But if you want to create an application in

which your users will create music on the fly—maybe as part of an
interactive instrument—or if you have live data or an algorithm that is
building music in realtime, you need to play your music differently. In

this case, you will not have a MIDI Sequence. Instead, you will want to
send MIDI events directly to a Synthesizer. For this purpose, JFugue has

a RealtimePlayer.

Through the RealtimePlayer, you can play Patterns just as you can with

the regular Player, but you can play those patterns at a time of your

choosing. You can also call specific methods that change the instrument

or current track, and start and stop specific notes. Here is a description
of the RealtimePlayer’s methods.

 changeTrack, changeInstrument, changeChannelPressure,

changePolyphonicPressure, changeController, setPitchBend:

These all do exactly what you think they should do! In fact, they
pretty much delegate to the MidiSynthesizer that is under the hood

of the RealtimePlayer.

 startNote, stopNote: These are realtime ways of starting and

stopping a note. They are similar to the noteOn() and noteOff()

methods of MidiSynthesizer. Of course, the JFugue difference is
that you can call either of these methods with a Note instead of a

MIDI note value.

 play: The RealtimePlayer can play a Pattern or a Staccato string!

 startInterpolator, stopInterpolator: The RealtimePlayer lets

you establish “interpolators,” which can send commands to the
RealtimePlayer while other events are being played. See the section

on RealtimeInterpolator below.

 getCurrentTime, scheduleEvent, unscheduleEvent: The

RealtimePlayer lets you schedule a musical event that will happen
in the future. See the section on scheduled events below.

 close: You should call this method when you are done using the

RealtimePlayer.

The following example provides a basic demonstration for some of the

methods listed above.

The Complete Guide to JFugue

 123

import java.util.Scanner;

import javax.sound.midi.MidiUnavailableException;

import org.jfugue.pattern.Pattern;

import org.jfugue.realtime.RealtimePlayer;

import org.jfugue.theory.Note;

public class RealtimeExample {

 public static void main(String[] args) throws

MidiUnavailableException {

 RealtimePlayer player = new RealtimePlayer();

 Scanner scanner = new Scanner(System.in);

 boolean quit = false;

 while (quit == false) {

 System.out.print("Enter a '+C' to start a note, '-C'

to stop a note, 'i' for a random instrument, 'p' for a pattern,

or 'q' to quit: ");

 String entry = scanner.next();

 if (entry.startsWith("+")) {

 player.startNote(new Note(entry.substring(1)));

 }

 else if (entry.startsWith("-")) {

 player.stopNote(new Note(entry.substring(1)));

 }

 else if (entry.equalsIgnoreCase("i")) {

 player.changeInstrument((int)(Math.random() *

128));

 }

 else if (entry.equalsIgnoreCase("p")) {

 player.play(PATTERNS[(int)(Math.random() *

PATTERNS.length)]);

 }

 else if (entry.equalsIgnoreCase("q")) {

 quit = true;

 }

 }

 scanner.close();

 player.close();

 }

 private static Pattern[] PATTERNS = new Pattern[] {

 new Pattern("Cmajq Dmajq Emajq"),

 new Pattern("V0 Ei Gi Di Ci V1 Gi Ci Fi Ei"),

 new Pattern("V0 Cmajq V1 Gmajq")

 };

}

Scheduling Events

You can schedule events to execute at a future point in time. To find the

current time, use the getCurrentTime() method. The RealtimePlayer

The Complete Guide to JFugue

 124

keeps time in milliseconds. To schedule an event, call scheduleEvent()

and provide a desired time and a class that implements the

ScheduledEvent interface. This interface has one method, execute(), that

provides a reference to the RealtimePlayer, and also provides the time at

which the event is being executed. You can use this to send events

directly to the RealtimePlayer.

For example, if you want to schedule an event for 5 seconds from now

that plays a specific pattern, you would use:

ScheduleEvent event = new ScheduledEvent() {

 @Override

 public void execute(RealtimePlayer player, long time) {

 player.play(“C D E”);

 }

};

RealtimePlayer player = new RealtimePlayer();

player.schedule(player.getCurrentTime()+5000, event);

You may also call the unschedule() method to cancel events that you

had already scheduled.

Realtime Interpolator

An interpolator is used to adjust values on a setting based on the elapsed
time between a start and an end time. Interpolators are often used in
animation. For example, given a starting point at time 0 and an ending

point at time 100, an interpolator can determine the points where some
figure should be drawn between times 0 and 100. Interpolators can use

any function to determine that point; some interpolators are simply
linear, whereas others might have “ease in” or “ease out” functions that
make the animating figure appear to slow down at the end points.

In JFugue, you can use a RealtimeInterpolator with the

RealtimePlayer to provide updates to any musical function over time,

while you then send other musical notes to the player. The most common
use cases might be adjusting volume or pitch bend while notes are
playing, but there is no limit to the types of adjustments you can make

using the interpolator.

The example below shows how to use an interpolator. First, create a

class that implements the RealtimeInterpolator interface (or, like the

example below, create an anonymous inner class). The interface has one

method, update, that provides a reference to the RealtimePlayer, the

amount of time that has elapsed since the interpolator started, and the
percent complete given as a double value from 0.0 to 1.0. Within the

update method, you can make changes to the music being played

through the RealtimePlayer. To start the interpolator, call the

The Complete Guide to JFugue

 125

startInterpolator() method, providing a reference to the interpolator

and the duration, in milliseconds, for which the interpolator should be
active. In the example below, the interpolator changes the pitch bend on

the synthesizer while a note is being played.

RealtimePlayer player = new RealtimePlayer();

RealtimeInterpolator ri = new RealtimeInterpolator() {

 int pitchBend;

 @Override

 public void update(RealtimePlayer realtimePlayer, long

elapsedTime, double percentComplete) {

 realtimePlayer.setPitchBend(pitchBend++);

 }

};

player.startInterpolator(ri, 3000);

Note note = new Note("C");

player.changeInstrument("Flute");

player.startNote(note);

try {

 Thread.sleep(3000);

} catch (InterruptedException e) { /* Handle exception */ }

player.stopNote(note);

player.close();

When you are done using an instance of RealtimePlayer, you should call

the close()to wrap things up.

Starting a Player with a Specific Sequencer or Synthesizer

Sequencer and Synthesizer are two classes provided by the Java Sound

package. The sequencer sends a MIDI Sequence, which is generated

when you use the Player class to play Staccato music, to a synthesizer;

the synthesize creates the audio output. When you use the various

Players, JFugue uses the default Sequencer and Synthesizer instances

provided by the Java Sound MidiSystem class.

There may be times when you want a Player to use a sequencer or
synthesizer that you have already set up. For example, if you are loading

new soundbanks into a synthesizer, you will want to make sure that the
Player uses that specific instance of the synthesizer.

JFugue provides two classes, SequencerManager and Synthesizer

Manager, that let you provide your instances of with a sequencer or

synthesizer. Both work similarly in that they are static (you call the static

method getInstance() to access the instance), both have a method that

allows you to get the default value (getDefaultSequencer() or

getDefaultSynthesizer()), and both have getters and setters that let you

set your own values (getSequencer()/getSynthesizer() and

setSequencer(Sequencer seq)/setSynthesizer(Synthesizer synth)). If

The Complete Guide to JFugue

 126

you do not set a specific sequencer or synthesizer, the getters return the
default values.

SequencerManager has several additional methods. You can use

connectSequencerToSynthesizer() to connect the sequencer to the

synthesizer returned by SynthesizerManager. You can also listen for end

of track messages using add/removeEndOfTrackListener(). The

EndOfTrackListener interface in org.jfugue.player consists of a single

callback, onEndOfTrack(), that is sent when the sequence being played

sends MIDI Meta Event 47. ManagedPlayer uses this to know when to call

finish().

The Complete Guide to JFugue

 127

5.2

Parsers and ParserListeners

One of the capabilities that makes JFugue uniquely extensible is an
architecture that provides parsers for interpreting musical data, and

listeners that can respond to the musical events that the parser
encounters. This architecture lets JFugue parse Staccato music and

transform it into MIDI. It also allows JFugue to read a MIDI file and
transform it into sheet music that can be used in LilyPond. In fact, it
allows for any music format to be transformed into any other music

format, whether that format is something well-known (such as MIDI or
MusicXML), an emerging standard (such as Staccato), or your own
experimental creation (for example, how about music that can be

interpreted from, or written into, biological DNA!).

A Common Pattern for Parsers and ParserListeners

If you use parsers and parser listeners, you will soon become familiar

with the following pattern, which also makes an appearance in several
places in the JFugue API. The pattern consists of these five steps:

1. Create an instance of a Parser

2. Create an instance of a ParserListener

3. Add the ParserListener to the Parser using addParserListener()

The Complete Guide to JFugue

 128

4. Call a parse() method on the Parser, passing in whatever value

the Parser knows how to parse
5. Get a result from the ParserListener, in whatever format (and using

whatever methods) the ParserListener provides

For example, the constructor in the Player class has the beginning of

this pattern:

 staccatoParser = new StaccatoParser();

 midiParserListener = new MidiParserListener();

 staccatoParser.addParserListener(midiParserListener);

and the play() method eventually finishes it:

 staccatoParser.parse(pattern);

 return midiParserListener.getSequence();

Similarly, the loadPatternFromMidi() method in the MidiFileManager

class has the following code that parses MIDI and turns it into Staccato:

MidiParser midiParser = new MidiParser();

StaccatoParserListener staccatoListener = new

 StaccatoParserListener();

midiParser.addParserListener(staccatoListener);

midiParser.parse(MidiSystem.getSequence(in));

return staccatoListener.getPattern();

You will see (or write!) a similar pattern if you decide to use classes like

MusicXmlParser, MusicXmlParserListener, LilyPondParserListener, and

so on.

Using Parsers and ParserListeners

Parsers are interesting from an object-oriented perspective. Here’s why:

While there is a Parser class, it does not define a parse() method! Every

Parser presumably has its own way of dealing with whatever data it

needs to parse. Since JFugue does not know how each Parser will work,
or what kind of data each Parser needs to parse, it does not try to enforce

an arbitrary structure by defining a parse() method for subclasses of

Parser to deal with.

However, the Parser class does come with a bunch of good stuff,

particularly the maintenance of the list of ParserListeners and a

collection of methods that fire events to the ParserListeners. There are a

fair number of events, and it is these events that allow Parsers and

ParserListeners to speak the same language and share musical

information.

The Complete Guide to JFugue

 129

In contrast to Parser, ParserListener is an interface that specifies many

methods that an implementing class must override. Each of these is
called in response to some musical information that the Parser finds.

Table 11 lists the musical events.

Parser method to fire event ParserListener method to override Parameter
fireBeforeParsingStarts beforeParsingStarts No parameter
fireAfterParsingFinished afterParsingFinished No parameter
fireTrackChanged onTrackChanged byte track
fireLayerChanged onLayerChanged byte layer
fireInstrumentParsed onInstrumentParsed byte instrument
fireTempoChanged onTempoChanged int tempoBPM
fireKeySignatureParsed onKeySignatureParsed byte key, byte scale
fireTimeSignatureParsed onTimeSignatureParsed byte numerator,

byte denominator
fireBarLineParsed onBarLineParsed long id
fireTrackBeatTimeBookmarked onTrackBeatTimeBookmarked String timeBookmarkId
fireTrackBeatTimeBookmark

 Requested

onTrackBeatTimeBookmark

 Requested

String timeBookmarkId

fireTrackBeatTimeRequested onTrackBeatTimeRequested double time
firePitchWheelParsed onPitchWheelParsed byte lsb, byte msb
fireChannelPressureParsed onChannelPressureParsed byte pressure
firePolyphonePressureParsed onPolyphonicPressureParsed byte key, byte pressure
fireSystemExclusiveParsed onSystemExclusiveParsed byte… bytes
fireControllerEventParsed onControllerEventParsed byte controller, byte value
fireLyricParsed onLyricParsed String lyric
fireMarkerParsed onMarkerParsed String marker
fireFunctionParsed onFunctionParsed String id, Object message
fireNoteParsed onNoteParsed Note note
fireChordParsed onChordParsed Chord chord

Table 11. ParserListener events and the fire methods that call them

Just like the Parser class does not define a parse() method, because

the signature of that method would be different for every type of Parser,

the ParserListener class does not define a getResult() method.

However, your ParserListener should have a getResult() method, or

something with a similar function but a different name, that returns

whatever the specific ParserListener needs to return.

ParserListener clearly has a lot of methods that implementing classes

need to override. Fortunately, JFugue provides ParserListenerAdapter,

an abstract class that provides empty implementations for all of the

ParserListener methods. This means that your class can extend

ParserListenerAdapter instead of implement ParserListener, and then

you can override only the methods you need.

The Complete Guide to JFugue

 130

Creating Musical Tools with ParserListener

You can do more than convert music from one format to another using

Parser and ParserListener. You can also create “musical tools” that let

you do interesting things with your music. For example, you can to data

analysis on the notes being parsed; you can change all instruments from
one type to another; you can create a new track based on music you hear

in other tracks; the list is bounded only by your creativity! And whatever
tool you create will work with music in any format that JFugue has a
parser for – Staccato, MIDI MusicXML, and so on – including parsers

that haven’t even been invented yet. ParserListenerAdapater helps make

it easy to create a musical tool by abstracting all of those ParserListener

methods (with 22 methods, it is definitely a large interface) so you can

focus on the one or two methods that you care about for your tool.

For example, suppose you want to get a list of all of the musical

intruments used in a piece of music. You can create an InstrumentTool

like this:

import java.util.ArrayList;

import java.util.List;

import org.jfugue.midi.MidiDictionary;

public class InstrumentTool extends ParserListenerAdapter

{

 private List<String> instrumentNames;

 public InstrumentTool() {

 super();

 instrumentNames = new ArrayList<String>();

 }

 @Override

 public void onInstrumentParsed(byte instrument) {

String instrumentName =

MidiDictionary.INSTRUMENT_BYTE_TO_STRING.

get(instrument);

 if (!instrumentNames.contains(instrumentName)) {

 instrumentNames.add(instrumentName);

 }

 }

 public List<String> getInstrumentNames() {

 return this.instrumentNames;

 }

}

The Complete Guide to JFugue

 131

Now you can use this InstrumentTool like any other ParserListener.

Here’s an example: let’s use the InstrumentTool to find all of the

instruments used in any MIDI file:

public static void main(String[] args) throws IOException,

InvalidMidiDataException {

 MidiParser midiParser = new MidiParser();

 InstrumentTool instrumentTool = new InstrumentTool();

 midiParser.addParserListener(instrumentTool);

 midiParser.parse(MidiSystem.getSequence(

 new File("filename")));

 List<String> instrumentNames =

 instrumentTool.getInstrumentNames();

 for (String name : instrumentNames) {

 System.out.println(name);

 }

}

For one of my MIDI files, I get the following output:

Steel_String_Guitar

Piano

Fretless_Bass

Accordian

Flute

Synth_Strings_1

Electric_Jazz_Guitar

Of course, I could use this same tool on music defined in Staccato or
MusicXML and it will still work.

Just listing the instruments used in a musical piece is one of the most
basic use cases of this capability. You could easily do much more
interesting things:

- Determine a Parsons Code for a given musical piece. “Parsons

Code for Melodic Contours” indicates whether a melody is going up
or down (or remaining the same) during a song. For example, the
Parsons Code for “Twinkle, Twinkle, Little Star” is as follows, with

the asterisk representing the first note, and r, u, and d for remain,

up, and down: *rururddrdrdrd urdrdrdurdrdrd drururddrdrdrd.

With this bit of information, you might be able to tell what song a
person is trying to find just by humming!

- Do a statistical analysis on the notes of a song. Suppose you load
and analyze a bunch of songs by Bach, Vivaldi, Handel, and other

classical composers. Now, take an unanalyzed song and see if your
algorithm can determine who wrote it, based on the similarity of

melody, harmony, and cadence. Or, try creating a new song based
on your statistical analysis of Bach – determine the next notes in

The Complete Guide to JFugue

 132

your composition based on the most likely notes according to your
analysis!

- Create a game with the information you get by mapping each word
in the lyrics of a song with the notes that are used to play that

word. For example, the word “angel” is played differently in J. Geils
Bands’ “Centerfold”, Aerosmith’s “Angel”, and Sarah McLachlan’s

“Angel”. Players have to match the notes to the right song. (Or,
maybe you’ll discover that subconsciously, everyone sings “angel”
with the same Parsons Code!)

Chaining Multiple ParserListeners

This is just a friendly reminder about programming with interfaces…

Remember that you can add many ParserListeners as you want to a

single Parser. So you could, for example, run the InstrumentTool and

something like a DurationCounter at the same time by adding both

ParserListeners to, say, a MidiParser.

But wait! What if your ParserListener wants to change the stuff that is

being parsed? What if you want to change the instruments coming in,

and you want downstream ParserListeners to know about that change?

In this case, you would not add multiple ParserListeners to a Parser.

Instead, you would set up a chain of ParserListeners. You would

actually add ParserListeners to ParserListeners! At that point, you do

not want the downstream ParserListener to listen to the original Parser,

which would now contain outdated data. You instead want the

downstream ParserListener to listen to the updated data… and

anything else that happens to be carried over from the Parser.

This means that your ParserListener needs to do something different

than implement ParserListener. Instead, it needs to extend

ChainingParserListenerAdapter. That Chaining Adapter both extends

Parser and implements ParserListener, so it acts as both. And whereas

ParserListenerAdapter provides empty implementations of all of the

ParserListener methods, ChainingParserListenerAdapter provides

implementations for each ParserListener method that fires the event for

the next downstream ParserListener. Here is an example that would

change all piano instruments to guitars:

class InstrumentChangingParserListener extends

ChainingParserListenerAdapter {

 int counter = 0;

 @Override

 public void onInstrumentParsed(byte instrument) {

 if (instrument ==

MidiDictionary.INSTRUMENT_STRING_TO_BYTE.get("PIANO")) {

The Complete Guide to JFugue

 133

 instrument =

MidiDictionary.INSTRUMENT_STRING_TO_BYTE.get("GUITAR");

 counter++;

 }

 super.onInstrumentParsed(instrument);

 }

}

And here is how you would use this in an example that reads a MIDI file,
converts all piano instruments to guitar, and generates Staccato output.
That Staccato output won’t have any piano instruments, only guitars.

Notice how the StaccatoParserListener is added to the

InstrumentChangingParserListener instead of the MidiParser. Also

notice that the first ParserListener in the chain, the

InstrumentChangingParserListener, is added as a listener to the Parser.

public static void main(String[] args) throws

InvalidMidiDataException, IOException {

 MidiParser parser = new MidiParser();

 InstrumentChangingParserListener instrumentChanger = new

InstrumentChangingParserListener();

 StaccatoParserListener staccatoListener = new

StaccatoParserListener();

 instrumentChanger.addParserListener(staccatoListener);

 parser.addParserListener(instrumentChanger);

 parser.parse(MidiSystem.getSequence(new File("your midi

file")));

 System.out.println("Changed "+instrumentChanger.counter+"

instances if Piano to Guitar! "+

staccatoListener.getPattern().toString());

}

Remember that you can chain as many

ChainingParserListenerAdapters as you want to each other. Just be

sure to hook up the first one as the listener to the Parser.

Using the DiagnosticParserListener

If you create your own Parser, one way to test your Parser is to connect a

DiagnosticParserListener to it and check its output. JFugue provides

the DiagnosticParserListener as a developer tool to help see what

events are being sent by a Parser. Just add the

DiagnosticParserListener to your Parser, and for each musical event,

you will either get a print out or a log of the results (you can change

whether you get a print out or a log (or both!) in the print() method in

DiagnosticParserListener).

The Complete Guide to JFugue

 134

MusicXML, LilyPond, and Other Parsers and ParserListeners

One of the strengths of JFugue’s Parser/ParserListener architecture is

that it provides a common interface that many other music formats can
understand. This allows for easy integration with other musical tools and
systems. And, since any Parser can be connected to any ParserListener,

it also means that any new Parser or ParserListener can instantly be
used with any other Parser or ParserListener available to JFugue.

Ideally, this should result in a whole bunch of new Parser and
ParserListener classes for music formats that the wider community is

interested in! In fact, because this is such an easy integration point, and
because there are many more formats out there than I have the time to
learn, I expect that most of the connection to other formats will be

contributed by the JFugue community. At the time of this writing, the
range of Parser and ParserListener implementations consists of MIDI,
MusicXML, and LilyPond, as shown in Table 12. The MIDI classes are a

necessary part of the JFugue core, and those reside in the

org.jfugue.midi package. The other classes are part of the

org.jfugue.integration package. Other formats that have been

considered include Open Sound Control (OSC) and ABC Notation. There
are currently no efforts to write those integration points (hint, hint).

Format Parser Name ParserListener Name Contribution

MIDI MidiParser MidiParserListener Part of the core of
JFugue

MusicXML MusicXmlParser MusicXmlParserListener

(currently under development)

Contributed by
community

LilyPond (none) LilyPondParserListener Contributed by
community

Table 12. Parser and ParserListener implementions in JFugue distribution

These classes all work the same as any other Parser or ParserListener:

1. The Parser’s parse() method will be unique for each parser, but

all parsers will extend Parser and call the fireXxx() methods in

Parser to fire musical events to listeners

2. The specific method call to get the results of the ParserListener’s

activity will be unique for each ParserListener, but all

ParserListeners will implement onXxxParsed() events

3. Any ParserListener can be added as a listener to any Parser

Specific instructions on using the MusicXMLParser/Listener or

LilyPondParserListener are outside the scope of this book, but my

expectation is that these will be adequately documented by their author,
and I will gladly post those explanations on JFugue.org.

The Complete Guide to JFugue

 135

5.3

Temporal ParserListener-Parser

If you like time travel, you’ll love the Temporal ParserListener-Parser. It’s

a Parser and a ParserListener at the same time, and it lets you know

about musical events in “music time” (the time it takes to play the music)

before (or after) the events are actually played. As a ParserListener, the

Temporal ParserListerner-Parser listens to musical events from any

Parser and creates a list of those events indexed by the time at which the
events should occur in music time. Recall from the section on Players

that music is parsed in a separate loop than it is played. Parsing
happens quickly, while playing happens in music time. For example, if
you have a MusicXML version of Bach’s “Inventio 13”, it will take the

MusicXmlParser a few milliseconds to parse the file, but when you play

the song, the music will play for about one minute. But, of course,
playing the music simply sends the music to a MIDI synthesizer; no
JFugue events are created while music is played. But what if you want to

know about the musical events while the music is playing? That’s where
the Parser portion of Temporal PLP comes into action. Once the
ParserListener side of Temporal PLP has its list of musical events indexed

by music time, the Parser side goes through those events in music time
and fires the events to any other ParserListeners. This means that you

can know about music that is being played and, at the same time, you

The Complete Guide to JFugue

 136

can get the events that happen at the same time. So, for example, you
could display lyrics while music is playing. And if you start the Temporal

PLP parser while delaying the Player, you can listen for music events and
know about them before they happen. Now you can do really cool things,

like create a music training program that shows notes that are about to
occur, or create an animated drummer who pulls the drumstick back
before striking the drum that is heard through the played music.

The Temporal ParserListener-Parser

With both Player and RealtimePlayer, Staccato music is parsed into

MIDI as quickly as possible, and the music is then played, taking as long
as the music needs to finish playing. If you’re interested in getting
musical events from the Staccato parser in realtime, neither of these

players can provide that. Playing the music is handled with the MIDI

classes in javax.sound.midi, and there are no JFugue-provided musical

events to listen to as the music plays (although if you had a MIDI
receiver listening to the MIDI sequence, you would get those MIDI

events).

TemporalPLP allows you to create a program that receives JFugue-based

musical events while the music is being played by the MIDI sequencer. It

does this by being both a ParserListener and a Parser. You’ll learn more

about the ParserListener interface in the next section, but for now it’s

sufficient to know that a ParserListener receives musical events when

music is parsed by a Parser (any kind of parser – a Staccato parser, a

MIDI parser, a MusicXML parser, and so on). The ParserListener

portion of TemporalPLP parses the Staccato music provided to it, listens

to the resulting events, and records them in a data structure (a map)

indexed by track time. Then, the Player portion of TemporalPLP plays the

events in the data structure based on the track time at which they are
scheduled to occur.

Using Temporal PLP

Here’s how to use TemporalPLP. First, let’s define some music that we
want to play, and we’ll put this into a variable since we will need to use it
twice: once to parse the music the first time, and again to play it.

String music = "C D E F G A B";

The first step in using TemporalPLP is to create a parser that can

interpret the music, and add an instance of TemporalPLP as a listener.

This means that all of the musical events that result from parsing the

incoming music will go straight to TemporalPLP, rather than being

rendered as sound. Of course, you could use any parser here. In this

The Complete Guide to JFugue

 137

example, we’ll use the StaccatoParser. After adding TemporalPLP as a

listener, we can then parse the music.

 StaccatoParser parser = new StaccatoParser();

 TemporalPLP plp = new TemporalPLP();

 parser.addParserListener(plp);

 parser.parse(music);

Step 1 is complete! For Step 2, we want to play back the events that

TemporalPLP recorded in Step 1. We also want to do other things with the

music while we are receiving those events – for example, we may want to
play the music! In this Step 2 example, we will use the

DiagnosticParserListener, a JFugue diagnostic tool that prints to

System.out and also logs all of the messages it receives. We will add that

as a parser listener to the TemporalPLP. Separately, we will also play the

music using the Player with a delay of 1000ms (1 second). When we call

parse() on the TemporalPLP, it will go through all of the events it

recorded in Step 1 and release those events in realtime based on when
they should occur.

 DiagnosticParserListener dpl = new

DiagnosticParserListener();

 plp.addParserListener(dpl);

 new Player().delayPlay(1000, music);

 plp.parse();

You could do any number of things with the events that TemporalPLP is

sends out. See what you can create!

The Complete Guide to JFugue

 138

The Complete Guide to JFugue

 139

Part 6

Patterns and Rhythms;
MIDI Data and Devices

The Complete Guide to JFugue

 140

The Gaudeamus omnes, using square notation.
From the 14th-15th century Graduale Aboense.

The Complete Guide to JFugue

 141

6.1

Introduction to Patterns

Patterns are a fundamental unit of music used throughout the JFugue
library. At its most basic level, a Pattern wraps a Staccato string, and in

fact a new Pattern can be defined by providing a Staccato string to the

Pattern constructor:

// This pattern contains the first notes

// of “Twinkle, Twinkle, little star”

Pattern pattern1 = new Pattern("C5q C5q G5q G5q A5q A5q

Gh");

A Pattern is more than just a string. Semantically, a Pattern is expected

to be a correctly specified string of Staccato music. Patterns also have
known ways of being added together (ensuring that there is a space
between two added patterns so the tokens in each pattern remain

separate), being transformed into different patterns, repeating phrases of
music within the pattern, and more. Finally, within the API, patterns are

produced by any class that implements PatternProducer – and a lot of

classes in JFugue implement PatternProducer. For example,

ChordProgression is a PatternProducer and can generate Staccato music

given a chord progression and a root note. Patterns are the fundamental
unit of music used throughout the JFugue library.

The Complete Guide to JFugue

 142

Let’s first start with showing how to use patterns to represent phrases of
music using the code sample below.

// This pattern contains the first notes

// of “Twinkle, Twinkle, little star”

Pattern pattern1 = new Pattern("C5q C5q G5q G5q A5q A5q

G5h");

// This is “How I wonder what you are”

Pattern pattern2 = new Pattern("F5q F5q E5q E5q D5q D5q

C5h");

// This pattern can be used for both “Up above the world

// so high” and “Like a diamond in the sky”

Pattern pattern3 = new Pattern("G5q G5q F5q F5q E5q E5q

D5h");

// This is the full song, combining patterns

Pattern twinkleSong = new Pattern(pattern1, pattern2,

pattern3, pattern3, pattern1, pattern2);

// Now play it!

Player player = new Player();

Player.play(twinkleSong);

Figure 14. Sheet music for “Twinkle Twinkle Little Star”

In the example above, the full song consists of 42 notes, but thanks to
patterns you don’t have to enter repeated segments of music. A lot of
music that we listen to has repeated patterns. For example, the song

structure of popular music is often composed of the following individual
pieces:

Intro, Verse, Bridge, Chorus, Verse, Bridge, Chorus,
Breakdown, Verse, Bridge, Chorus, Outro

The Complete Guide to JFugue

 143

Using Patterns to Construct Music

Patterns can also be used as a space for creating new music. You can
create an empty pattern, and then add music to the Pattern as you
determine what to build.

Behind the scenes, the Pattern class uses a StringBuilder object to

construct the pattern when new musical segments are added. This is

more efficient than concatenating Strings, because when Strings are

concatenated together, new String objects are formed and memory need

to be allocated.

You can create an empty pattern, and then add either patterns (as shown
in the TwinkleSong pattern above) or Staccato strings to the pattern. For
example:

Pattern pattern1 = new Pattern();

pattern1.add(pattern2); // Add a Pattern to a Pattern

pattern1.add("C5q C5q"); // Add a String to a Pattern

Additionally, the Pattern class provides add() methods that let you add

many things in one method call, and that allow you to indicate how
many times to add a particular piece of music:

// Add pattern4, pattern5, and pattern6 to pattern1

pattern1.add(pattern4, pattern5, pattern6);

// Add a couple of Staccato strings to pattern1

pattern1.add("C5q", "G5q", "G5q", "Ab5q", "E4h");

// Add pattern3 to pattern1 four times

pattern1.add(pattern3, 4);

// Add G5q to pattern1 3 times

pattern1.add("G5q", 3);

Remember that you can add not only patterns, but PatternProducers –
anything that creates a pattern. This means that you can also add

musical objects, such as notes and chords, to a pattern quite easily:

// Add a Note object to pattern1

pattern1.add(new Note(60, 0.5));

// Add a chord progression to pattern 1

pattern1.add(new ChordProgression("I IV V").setRoot("C5"));

In addition to adding to a pattern, you can prepend to the beginning of a

pattern using the prepend() method.

The Complete Guide to JFugue

 144

Pattern also provides methods that let you assign a tempo, voice, and
instrument. The best use of these methods is when you have a pattern

that you know to be a single phrase of music (as opposed to, say, a large
pattern with multiple voices). Here is an example:

 Pattern p1 = new Pattern("Eq Ch. | Eq Ch. | Dq Eq Dq

Cq").setVoice(0).setInstrument("Piano");

 Pattern p2 = new Pattern("Rw | Rw | GmajQQQ

CmajQ").setVoice(1).setInstrument("Flute");

 Player player = new Player();

 player.play(p1, p2);

The repeat() method lets you repeat the contents of a pattern. The full

content of the pattern is simply added to the end of itself as many times

as you specify as a parameter. The clear() method removes all of the

content of the pattern.

The setTempo(), setVoice(), and setInstrument() methods do not alter

the patterns themselves, but when toString() is called, the tempo, voice,

and instrument (in that order) will be prepended to the content of the

pattern. These methods can take either numbers (e.g., setTempo(120),

setVoice(5), or setInstrument(110)) or, for tempo and instrument,

strings (e.g., setTempo("Allegro") or setInstrument("Fiddle")). The

value for the strings are looked up in JFugue’s MidiDictionary.

Patterns are Composed of Tokens

Each space-separated section of a pattern is referred to as token. The

pattern "Eq Ch. | Eq Ch. | Dq Eq Dq Cq" has ten tokens: eight note

tokens and two barline tokens.

You can get all of the tokens from a Pattern using getTokens(). This

returns a list of Token objects, and in the process of separating the

Staccato string into tokens, each Token instance knows what type of

token it is. For example, a token can report, through getType(), that it is

a Note token – or more specifically, that it is a TokenType.NOTE. The

Staccato subparsers are used to identify the type of tokens, and the

Subparser interface has a method, getTokenType(), that implementors

must implement.

One thing to be aware of is that the list of tokens you get from

getTokens() are the set of tokens that are generated after each of the

preprocessors has been executed on the Staccato string. It is necessary

to first run the preprocessors on the string, before separating into
tokens. One reason is that spaces are valid within lyrics, markers, and

other expressions. For example, ‘(this is great) should be seen as

one token, not three. Tokens should also be things that subparsers can

The Complete Guide to JFugue

 145

parse, and in many cases, preprocessed elements need to be turned into
something else so they can be parsed into musical information. For

example, the microtone m542.6 needs to be turned into pitch bend and

note events to be turned into musical events.

With this in mind, the tokens you get back that had spaces will have

those spaces replaced with underscores. Calling getTokens() on ‘(this

is great) will result in one token, ‘(this_is_great).

One of the nice things about the Token class is that it implements

PatternProducer! The pattern it returns is the token itself. This means

that you can create a Pattern by using Tokens. This lets you do creative

things like getting all of the tokens from a pattern and scrambling them
to create a new pattern, or replacing all of a certain type of token with an

alternate value (if (token.getType() == TokenType.INSTRUMENT) then

...).

Adding to a Decorator to Each Note Token in a Pattern

The Note token in a Staccato string can get long, especially when you

want to include dynamics (e.g., note on and note off velocity). The length
of these tokens can negatively affect the readability of your music. If you
find yourself in a situation where every note in a pattern needs to be

given the same dynamics, you can use the addToEachNoteToken()

method to separate this from the flow of the music itself. This method
does not actually care whether you are adding dynamics or any other
thing to each note in the pattern, although that is probably the most

likely use case.

Here’s how it works. When you call addToEachNoteToken() and pass a

string to add, the method gets all of the tokens for the pattern, finds only

the Note tokens, and adds your string to the end of each note token. It
will then return a pattern (the same pattern object that you started with)
with an updated set of contents.

You can also pass a space-separate string to this method. In that case,
the method will split your string on spaces and it will cycle through each

of your space-separated elements, adding one at a time to each note it

finds. For example, a pattern of "E C D A G" with adding "q i"

(demonstrating duration instead of dynamics) will result in a pattern of

"Eq Ci Dq Ai Gq". When the elements you provided run out, the list will

be run from the beginning again. If your notes run out first – "E C"

adding "w h q i s" – you will get the same number of notes you started

with: "Ew Ch".

The Complete Guide to JFugue

 146

Loading and Saving Patterns

You can save a pattern using the save(File file) method, and you can

load a pattern using the static Pattern.load(File file) method. In both

cases, the file that is created or read is expected to simply contain one or
more Staccato strings in plain text format. One way to use this is to

change music that your program plays without needing to recompile your
code. You can also use this to export the Staccato music from a pattern
that is generated dynamically by a computational algorithm. Well, far be

it from me to tell you when you might want to save and load a string of
music – I’m sure you’ll come up with your own needs, too! And while the
ability to write a string to a file, or read a string from a file, is rather

basic, it’s nice to know that the Pattern class provides these methods to

make your music programming life that much easier.

Since the pattern files are saved in a plain text format, you can edit them

easily. You can also create new lines, and if a new line starts with a hash

mark (#), it will be treated as a comment (and not as a Staccato “Marker”

element). And, the save(File file, String... comments) method will

insert your comments at the beginning of the file. When you load a file
with comments, the comments are ignored.

While not enforced, a saved pattern should ideally use a .staccato

extension.

Here is an example file that plays Für Elise by Beethoven. Save this text

in a text file and name it furelise.staccato:

"Fur Elise", Ludwig van Beethoven

Transcribed into Staccato by David Koelle

http://www.jfugue.org

T200

V0 E5s D#5s | E5s D#5s E5s B4s D5s C5s | A4i Rs C4s E4s A4s | B4i

Rs E4s G#4s B4s | C5i Rs E4s E5s D#5s | E5s D#5s E5s B4s D5s C5s

| A4i Rs C4s E4s A4s | B4i Rs E4s C5s B4s | A4q

V1 Ri | Riii | A2s E2s A3s Rsi | E2s

E3s G#3s Rsi | A2s E2s A3s Rsi | Riii | A2s E2s A3s Rsi |

E2s E3s G#3s Rsi | Riii

You can then load it and play it with this code:

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

The Complete Guide to JFugue

 147

public class LoadJFugueFile {

 public static void main(String[] args) throws IOException {

 Pattern pattern = Pattern.load(new

File("furelise.staccato"));

 Player player = new Player();

 player.play(pattern);

 }

}

One of the great things about specifying music this way is that you can
change the music without recompiling the code! This is also a great way

to share music with other people who use JFugue.

Transforming and Measuring Musical Data Within Patterns

One of the exciting effects of having music represented within a pattern

is that you can easily write code to transform patterns into different
patterns – for example, by reversing the notes in a pattern, changing

each note’s duration, adding tracks from different songs together, and so
on. You can also measure the data within a pattern – for example, you
can find out which notes are used most frequently, or how often one note

follows a sequence of two or more other notes (i.e., Markov chain), how
long each track has notes playing versus resting, and so on.

In the past, JFugue provided a PatternTransformer class and a

PatternTool class to assist with transforming and measuring patterns,

respectively. However, those classes provided only a very light layer of

“syntactic sugar” on the ParserListener class. Instead, JFugue 5.0 adds

two method to the Pattern class: transform() and measure(). Both take

a ParserListener as a parameter, and both work the same in that they

create a StaccatoParser, add the listener provided through the method

call, parse the pattern, and return the pattern. The pattern is not
changed in this operation, so the value returned by the method is the

same as the value when the method was called. This mechanism keeps
the flow of the fluent API – just remember that even if you call

transform(), the pattern remains unchanged. You will then need to call

the specific methods on your ParserListener that you created to return

the results of your listener. (There is no difference in how transform()

and measure() work – in fact, they call the same common code within the

Pattern class. The reason for the two method names is to make your

intention clear when you write your code. It is easier to understand
“transform” and “measure” separately than to try inventing a phrase that
represents them both clearly.)

Recall the InstrumentTool example from the section, Creating Musical

Tools with ParserListener. You can use the same InstrumentTool class

with the measure() method:

The Complete Guide to JFugue

 148

public static void main(String[] args) throws IOException,

InvalidMidiDataException {

 InstrumentTool instrumentTool = new InstrumentTool();

 Pattern pattern = new Pattern("V0 I[Piano] A B C V1

I[Flute] D E F");

 pattern.measure(instrumentTool);

 List<String> instrumentNames =

 instrumentTool.getInstrumentNames();

 for (String name : instrumentNames) {

 System.out.println(name);

 }

}

The Complete Guide to JFugue

 149

6.2

TrackTable: A Table of Patterns

Patterns are a nice way to represent recurring musical phrases, but
JFugue 5.0 introduces a new concept that takes song development one

step further. TrackTable is a collection of patterns that spans both time

(or song length) and tracks. It’s like a spreadsheet, where each row is one
track, each column is one segment of song, and each cell may contain a

PatternProducer. The TrackTable API also provides some unique ways of

populating the table.

Creating and Populating a Track Table

When you create a TrackTable instance, you pass the size of the table,
which is how many columns-worth of patterns the table should be able
to hold. The constructor will automatically provide 16 rows, one for each

track or voice. Remember that the 10th row is reserved for percussion.

You also need to pass a double value representing the duration of each
segment, where 1.0d represents a whole duration. TrackTable will
automatically populate each cell of the table with a default pattern

containing the voice and a rest of the given duration, such as V0 R/1.0.

This provides the timing necessary so when you start populating the
table with patterns, the patterns will play at the expected time.

The Complete Guide to JFugue

 150

To illustrate this, calling TrackTable(5, 1.0d) will result in a table like

the following:

V0 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V1 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V2 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V3 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V4 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V5 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V6 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V7 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V8 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V9 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V10 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V11 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V12 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V13 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V14 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

V15 R/1.0 R/1.0 R/1.0 R/1.0 R/1.0

Since TrackTable is a PatternProducer, you can play it with

Player.play(). But if you played this example, you wouldn’t hear much

yet. Let’s start putting patterns into the table!

TrackTable provides a variety of put() commands:

 put(int track, int position, PatternProducer p) does exactly

what you think it will. The pattern you provide will be placed in the

expected cell of the table.

 put(int track, int start, int end, PatternProducer p) will

place the given pattern in each cell of the given track from start to

end, including in the start and end cells. put(0, 2, 4, p) will

place p three times, in columns 2, 3, and 4.

 put(int track, int start, PatternProducer… ps) will place each

of the patterns given as a parameter one after another in

subsequent columns from the start. put(0, 5, p1, p2, p3) will

place p1 in column 5, p2 in column 6, and p3 in column 7.

 put(int track, String placementPattern, PatternProducer p)

requires a discussion of its own – see below.

The Complete Guide to JFugue

 151

 putAtIntervals(int track, int nth, PatternProducer p) will

place the given pattern in every nth position starting with the first

position. putAtIntervals(0, 2, p) will place p in position 1 and 3

(given a maximum table size of 5).

 putAtIntervals(int track, int first, int nth, int end,

PatternProducer p) will place the given pattern in position first,

then every nth position after that until end. putAtIntervals(0, 1,

2, 4, p) will put place p in positions 1 and 3.

 put(Rhythm rhythm) places a Rhythm in the TrackTable, and it’s

intelligent about how it does this: it puts each segment of the
Rhythm into each respective column of the TrackTable. A nice,

seamless interaction between two parts of the JFugue API!

Now for that special put() method with the placement pattern. This

takes a specially formatted string in which each character of the string

represents a column of the table. If the character is a period, the cell is
untouched. If the character is any alphanumeric character, the pattern is
placed in the cell. If the character is a dash, the content of the cell is

cleared (you would use this if you intend to place a pattern that you
know will be longer than the duration of a single cell).

Let’s look at an example.

 TrackTable t = new TrackTable(5, 1.0d);

 t.put(0, "X-.X-", new Pattern("Cmajh Emajh Gmajh Emajh"));

 t.put(1, ".X..X", new Pattern("Gq Cq Eq Gq"));

This would result in a table like the following (for only the first two rows):

V0 Cmajh Emajh Gmajh Emajh R/1.0 Cmajh Emajh Gmajh Emajh
V1 R/1.0 Gq Cq Eq Gq R/1.0 R/1.0 Gq Cq Eq Gq

Now you could pass that TrackTable to Player.play() and hear the

music!

In addition to put() methods, TrackTable has a get(int track, int

position), clear(int track, int position), and reset(int track, int

position) method. The clear() method places an empty pattern in the

position; the reset() method places a rest with the duration given in the

constructor. Given JFugue’s fluent API, the put(), clear(), and reset()

methods all return the TrackTable instance itself, so you can chain these

together (t.put().put().put()…). Finally, getLength() will return the

number of columns in the table.

The Complete Guide to JFugue

 152

Managing Track Settings

Each track in your table will probably have some settings that you do not

need to repeat for each cell. For example (and maybe specifically), you
will probably need to declare the instrument for each track only once.

TrackTable has a setTrackSettings(int track, PatternProducer p)

and a corresponding getTrackSettings(int track) that let you provide a

pattern that will be prepended to the pattern produced by the table.

Let’s build on our example from earlier:

 TrackTable t = new TrackTable(5, 1.0d)

 .put(0, "X-.X-", new Pattern("Cmajh Emajh Gmajh Emajh"))

 .put(1, ".X..X", new Pattern("Gq Cq Eq Gq"))

 .setTrackSettings(0, "I[Flute]")

 .setTrackSettings(1, "I[Piano]");

This one chained line of code (not the use of the fluent API!) would result

in a table like the following (for only the first two rows):

I[Flute] Cmajh Emajh Gmajh Emajh R/1.0 Cmajh Emajh Gmajh Emajh
I[Piano] R/1.0 Gq Cq Eq Gq R/1.0 R/1.0 Gq Cq Eq Gq

The settings are maintained in a list that is separate from the table, but

they are added to the pattern when the table’s pattern is returned from

getPattern().

The Complete Guide to JFugue

 153

6.3

Rhythms

Just when you thought JFugue couldn’t get any cooler, along come
Rhythms. Imagine creating an awesome-sounding rock-n-roll beat in
practically four lines of code (well, technically, you could do it in one line

of code due to JFugue’s fluent API, but let’s not get carried away).

Introduction to Rhythms

The Rhythm class provides a natural and intuitive way to specify

rhythms and drum beats. To make this possible, the Rhythm class lets
you specify a beat by hammering out a string. For example, you might

imagine sitting at your computer and hammering out this little beat,
where the X’s are times that you tap your desk, and the periods are
pauses:

X..XX...X..XXX..

Try drumming that with your hand on your desk right now. Really, go
ahead and try it! As you are drumming this out on your desk (you are
doing it, aren’t you?), you might find that your other hand, or perhaps

one of your feet, is anxious to join in the beat. In fact, your two hands

The Complete Guide to JFugue

 154

together, or one of your hands and one of your feet, may be drumming
this beat:

X..XX...X..XXX..

..O...O...O...O.

(and if your other hand or foot didn’t already start tapping this out, don’t

despair. You can do it now!)

If this makes sense to you, then you’ll have no problem using the Rhythm

class. It has a method that takes strings exactly like this, and converts

them into a Pattern that you can pass to the Player.

The notation it uses is clearly different from the Staccato music that you

saw earlier. This is intentional: it helps you focus on the beat rather than
the content and length of elements in the Staccato string. The Rhythm
class will convert the X’s, O’s, and periods to a Staccato string when the

Rhythm’s getPattern() method is called. It makes that conversion based

on a dictionary called a “rhythm kit,” which maps each X, O, period, or
any other character to a Staccato replacement for that character.

The following example uses the Rhythm class to create an 8-beat rock
rhythm:

 Rhythm rhythm = new Rhythm();

 rhythm.addLayer("O.OO...O.OO....O");

rhythm.addLayer("....o.......o...");

rhythm.addLayer("^.`.^.`.^.`.^.`.");

player.play(rhythm.getPattern().repeat(4));

Give that a try (or run RhythmDemo.java in the JFugue source code) and

see what you think.

JFugue provides a default rhythm kit that contains the dictionary entries

mapping each character in the rhythm above to a Staccato string
representation. You will probably find that the default dictionary is
sufficient, but if you ever want to create your own, just pass a

Map<Character, String> to setRhythmKit(). Table 13 shows the

dictionary entries in the default rhythm kit (which is defined at the end

of Rhythm.java). A convention used in the default rhythm kit is that

uppercase characters correspond to eighth notes, and lowercase
characters correspond to the same drum but as a sixteenth note,

preceded by a sixteenth rest. The assumption built into the default
rhythm kit is that rhythms will each contain 16 eighth notes, and one
segment of the rhythm is a 2/4 bar (total duration equal to two whole

notes, or ww). You are free to design your own rhythm kits that use a

different meter.

The Complete Guide to JFugue

 155

Character Staccato string

. Ri

O (uppercase) [BASS_DRUM]i

o (lowercase) Rs [BASS_DRUM]s

S (uppercase) [ACOUSTIC_SNARE]i

s (lowercase) Rs [ACOUSTIC_SNARE]s

^ (caret) [PEDAL_HI_HAT]i

` (back tick) [PEDAL_HI_HAT]s Rs

* (asterisk) [CRASH_CYMBAL_1]i

+ (plus) [CRASH_CYMBAL_1]s Rs

X (uppercase) [HAND_CLAP]i

x (lowercase) Rs [HAND_CLAP]s

Table 13. DefaultRhythmKit entries

Keep in mind that all characters in a rhythm must have an entry in the
dictionary. You cannot use regular Staccato elements when defining a
Rhythm – you can only place Staccato in the rhythm kit dictionary. For

example, you cannot add a bar line or another note within the Rhythm
definition itself.

The Staccato output from a rhythm is played with the 10th MIDI channel

(known in JFugue as Voice 9 or V9), which is the channel on which

percussion instruments are played. In fact, elements like [BASS_DRUM]i

are actually MIDI notes. In any other channel, these notes would be
played chromatically, but in the 10th MIDI channel, notes correspond to

percussion sounds. See Section 2.3 for more information on this special
MIDI channel.

Layers

As discussed in Section 2.3, there can be 16 layers within the 10th MIDI

Channel. This means that there can be 16 notes played simultaneously
(i.e., in harmony) within Voice 9. This is accomplished by the use of

JFugue’s layers.

In a Rhythm, each time you call addLayer(), you are adding an

additional JFugue layer to Voice 9. Therefore, there is a limit (as

indicated by the MIDI specification) of 16 layers that can be added to a
Rhythm.

When the rhythm is converted to a pattern, you will see the V9 indicator

at the beginning of the resulting pattern, and you will see layer

indicators, such as L0, for each of the layers.

The Complete Guide to JFugue

 156

Getting Rhythms and Patterns

There are two types of computed results that you can get from a Rhythm.

The first is the full-length Rhythm, with all layers and alternate layers
(described below), expressed with the same characters as you initially

described the rhythm. To obtain this, call the getRhythm() method.

The second is the Pattern that the Rhythm produces. As a class that

implements PatternProducer, Rhythm provides a getPattern() method.

This method returns the full rhythm with each character expanded to its
Staccato string.

And, since Rhythm implements PatternProducer, you can send a Rhythm

directly to Player.play() to hear your rhythm.

Length and Segments

By default, the length of a rhythm is 1. This means that each rhythm
string you provide as a layer is added one time when you call

getPattern() or getRhythm(). If you provide a value to setLength(), you

can set how many times you want each layer string to be repeated in the

resulting pattern. For example, a rhythm with a layer of “S..” and a

length of 3 would result in a final rhythm of “S..S..S..”.

In the code, each instance of a rhythm pattern that is repeated to
complete the length is a segment. In this example, there are three

segments. They all happen to be “S..” in this case, but the use of

alternate layers (described below) could cause different rhythms to be

added during different segments as the full, length-long rhythm is
computed.

Combining Rhythms

There is a static method on Rhythm that lets you combine multiple
Rhythms into a single Rhythm. This will cause all of the layers, rhythm

kit dictionaries, and alternate layers from each of the rhythms in the
parameter to be added together and returned in a new instance of
Rhythm.

This is especially useful if you have portions of a Rhythm that you would
like to merge together to form a more complete Rhythm. For example,

you may have several commonly-used sequence of hi hats, and
separately you might have several standard snare beats; and separately

still you might have a favorite pattern of hand claps. You can select from
your collection and combine any of these rhythms together to form a
single rhythm.

The Complete Guide to JFugue

 157

Alternate Layers

If you are crafting a rhythm for a song, you may realize that the rhythm

is not identical during all portions of the song. During an intro or
breakdown, there may be a different rhythm, at the end of each chorus,
there may be a slightly different drum roll or accent, and so on. To

support these cases, the Rhythm API provides for alternate layers that
will be substituted for the base layer when the full length of the rhythm
is computed.

There are four manners in which alternate layers may be defined:

1. Recurring: Every nth segment will be replaced with this rhythm.

2. Ranged: Segments from a given start to a given end will be
replaced with this rhythm.

3. One Time: A specific segment will be replaced with this rhythm.

4. By a unique function: Given a segment number, you can write

code to determine what rhythm to use to replace the base rhythm.

The four methods that you can use to define these alternate layers are as
follows. Each of these takes the layer number as the first parameter, and
additional parameters as noted:

1. addRecurringAltLayer takes a start and end segment number,
and the “every nth” from the start. The start index counts as the

first recurrence. For example:

2. addRangedAltLayer takes a start and end segment number.

3. addOneTimeAltLayer takes a single segment number.

4. addAltLayerProvider takes a RhythmAltLayerProvider, which is

an interface with a single method, provideAltLayer(), that takes

the current segment number. Code that you write within

provideAltLayer() will use the segment number to determine

what rhythm to return, or null if the base rhythm will not be
replaced.

Here is an example of alternate layers in action. This example contains a
one time layer, a ranged layer, and a recurring layer.

import org.jfugue.player.Player;

import org.jfugue.rhythm.Rhythm;

public class AdvancedRhythms2 {

 public static void main(String[] args) {

 Rhythm rhythm = new Rhythm().addLayer("O..oO...O..oOO..")

The Complete Guide to JFugue

 158

 .addLayer("..S...S...S...S.")

 .addLayer("````````````````")

 .addLayer("...............+")

 .addOneTimeAltLayer(3, 3, "...+...+...+...+")

 .addRangedAltLayer(2, 1, 2, "`...`.``...```.`")

 .addRecurringAltLayer(1, 1, 4, 2, ".sS..sS..sS..sS.")

 .setLength(8);

 new Player().play(rhythm.getPattern());

 }

}

Z-Ordering of Layers

The base layer and each of the alternate layers has a z-order that
determines which layers have precedence over which other layers if
multiple alt layers are assigned to a given segment.

The base layer—the layer that consists of rhythms using the addLayer()

method—always has a z-order of 0. It is the first layer that will be used
for every segment of the full rhythm, unless determines otherwise.

Each of the methods to add an alt layer can optionally take a final
parameter that is a z-order that you specify. If you do not specify a z-

order, the alt layers have defaults. After the base layer, the following alt
layers will be added in this order:

1. Recurring

2. Ranged

3. One-Time

4. Alt Provider

The Complete Guide to JFugue

 159

6.4

Working with MIDI Data

In the next section, you will learn more about how JFugue works with
MIDI data. One of the things you can do with JFugue is turn an existing

MIDI file into Staccato music. This section covers some of the nuances of
that translation.

Expectations When Translating MIDI to Staccato

As you may know, MIDI is a set of musical instructions that tells a
synthesizer how to play music. Each of the MIDI events is associated
with a timestamp at which that event is meant to be used. In MIDI, when

a note should be played, the NOTE_ON MIDI Event is sent with the note
number, and when that same note is to be turned off, a NOTE_OFF MIDI

Event is sent with the same note number. MIDI does not have concepts
like rests or duration with respect to a time signature (e.g., there is no
‘whole note’ in MIDI).

Staccato, on the other hand, is not based on time. Instead, music in
Staccato is built in sequential order and with durations that have

musical meaning. Instead of asking for Note 60 at 5 seconds into a song,
you’d have to first create a rest, and give it a duration for as many whole

notes as 5 seconds translates to.

The Complete Guide to JFugue

 160

When MIDI is converted into Staccato, JFugue needs to compute the
rests and durations for notes, since rests are not represented in MIDI (a

rest simply means there are no musical events), and durations are
expressed in realtime rather than musical time.

Often, the music you’ll find in a MIDI file has been recorded from a
person playing a MIDI device, rather than being entered by a computer

system. You didn’t hear it from me, but it turns out that people are not
perfect, and whereas a person playing a musical instrument might
attempt to play quarter or whole notes, or wait a sixteenth or a half rest

between notes, they might be slightly off. JFugue attempts to translate
time between notes into known durations, like whole, half, or quarter

notes, but sometimes, JFugue is unable to do that translation with
certainty, which will result in durations specified with decimals.

JFugue also makes use of the @ time command when translating MIDI to

Staccato.

That’s an overview of two things you can expect to see when MIDI is

translated to Staccato: Bizarre note and rest durations, and lots of @

commands. Let’s now see how we can turn MIDI into a Staccato pattern

in the first place.

Turning MIDI into a Pattern, and Vice Versa

By now, you can probably guess that turning MIDI data into a Staccato

pattern is going to make use of something like a MidiParser and

something like a StaccatoParserListener. Well, that’s exactly what

happens! There is indeed a MidiParser, and it adds a

StaccatoParserListener as a listener. Rather than have you write this

pattern yourself, MidiFileManager provides it for you – as well as the

inverse: turning Staccato to MIDI using a StaccatoParser and a

MidiParserListener.

The methods are static methods in MidiFileManager called

savePatternToMidi() and loadPatternFromMidi(). Both take a File

representing the MIDI file to either save or load (or they can take an

OutputStream/InputStream). savePatternToMidi() also takes a Pattern,

and loadPatternFromMidi() returns a Pattern. You’ll need a try/catch

block around each to catch an IOException and, in

loadPatternFromMidi()’s case, an InvalidMidiDataException.

That’s all there is to it! Now you can load up your favorite MIDI song as a

Pattern, transform and measure it, pull it apart and throw it in a

TrackTable – whatever you can imagine!

The Complete Guide to JFugue

 161

6.5

Using JFugue with MIDI Devices

This chapter demonstrates how JFugue can be used to communicate to
external MIDI devices, such as musical keyboards, mixers, and more.

Why Communicate with External Devices?

The ability to easily interact with external devices increases the degree to
which one can experiment with music. Wouldn’t it be great if you could

hear your JFugue song played on your keyboard? Wouldn’t you have a
lot of fun making music with your keyboard, while recording the Pattern
that you generate, and then modify the pattern in interesting ways using

the JFugue API?

The MIDI classes that come with the Java Development Kit (JDK) get you
part of the way there. There is still a lot of additional work that needs to
be done to make the combination of software and external devices

seamless and easy to program in only a few lines of code. This is where
JFugue steps in.

Setting Up Communication with External Devices

If you’d like to experiment with the code in this chapter, you will need a
MIDI device, preferably a keyboard, and a MIDI connector. You should be

The Complete Guide to JFugue

 162

able to connect your MIDI device to your computer using a MIDI-to-USB
connector, and you should ensure that you have the correct drivers

installed for your operating system. Note that you may need a driver from
the manufacturer of your MIDI-to-USB cable, rather than a drive from

the manufacturer of your MIDI device.

You may also be able to set up a MIDI loopback on your system, which

would allow you to use JFugue to control MIDI-based music editing
software, such as Propellerhead Reason.

JFugue has three classes for interacting with external devices, all of

which can be found in the org.jfugue.devices package:

1. MusicReceiver, which sets up your external device as something

that can receive music from your program;

2. MusicTransmitterToParserListener, which sets up your external

device as a music transmitter, and when your device transmits
music, it will be received by a ParserListener that you can listen to;

3. MusicTransmitterToSequence, which also sets up your external

device as a music transmitter, and will record music sent from the
device to a MIDI Sequence.

Each of these needs to be constructed with the device you want to
connect to. The only way to know what devices are available is to list
them and select the one that makes the most sense. JFugue provides a

text-based tool, MidiDevicePrompt, to help you with this. In your sample

program, simply call MidiDevicePrompt’s static askForMidiDevice()

method, and you will see a list of available devices, printed to

System.out, followed with a prompt asking for the device you would like

to select. The askForMidiDevice() method returns an instance of a

MidiDevice for the selected device (MidiDevice is a Java class from

javax.sound.midi). You can use MidiDevicePrompt for your own

experiments, but if you want to create a user-facing application, you will
probably want to implement your own user interface for selecting the
MIDI device. (Previous versions of JFugue tried to be “intelligent” about

device selection by picking the device that had a name most similar to a
MIDI input device name, but this was not sufficiently reliable and the old

IntelligentDeviceResolver from JFugue 4 and earlier has been

removed from the API.)

Sending Music to a MIDI Device

If you have a MIDI file on your computer, it’s pretty fun to send it to your
keyboard and hear what it sounds like for your keyboard to play it. You

can do this very easily using JFugue, although interestingly, there is a lot

The Complete Guide to JFugue

 163

that happens behind the scenes to make this possible. JFugue needs to
sort all of the events in the sequence obtained from the MIDI file in

chronological order, then send them to your device at the right time.
Here is the only code you need to write:

try {

MidiDevice device = MidiDevicePrompt.askForMidiDevice();

MusicReceiver r = new MusicReceiver(device);

 File file = new File("yourfile.mid");

Sequence sequence = MidiSystem.getSequence(file);

r.sendSequence(sequence);

} catch (Exception e) {

e.printStackTrace();

}

Let’s break this down. First, you need to know which MIDI device to send

the music to. Then, create a MusicReceiver() instance passing in that

device. Open the MIDI file and send it to the device, and you’re done!

If you really want to see the innards of what r.sendSequence() is doing,

check out MidiTools.sendSortedMessagesToReceiver().

Listening to Music from a MIDI Device
After you have tested your connectivity by successfully sending music to
your device, now let’s listen to the music you play on your device! As

mentioned previously, there are two classes that will direct the music to
two different places: one to a MIDI Sequence, and one to any
ParserListeners that you specify. Both of these listeners let you listen to

music either:

1. Between when you call startListening() and when you call

stopListening(), or…

2. For a set number of milliseconds provided in
listenForMillis(long milliseconds)

Let’s look at the Sequence one first. Here is an example showing how to

listen for a Sequence using the startListening() and stopListening()

methods:

try {

MidiDevice device = MidiDevicePrompt.askForMidiDevice();

MusicTransmitterToSequence transmitter =

 new MusicTransmitterToSequence(device);

DemoPrint.step("Press [ENTER] when you're ready to start

playing...");

Scanner scanner = new Scanner(System.in);

scanner.nextLine();

transmitter.startListening();

The Complete Guide to JFugue

 164

DemoPrint.step("Press [ENTER] when you're ready to stop

playing...");

scanner.nextLine();

scanner.close();

transmitter.stopListening();

// Now you can call transmitter.getSequence()...

} catch (MidiUnavailableException e) { e.printStackTrace(); }

} catch (InvalidMidiDataException e) { e.printStackTrace(); }

You might imagine creating a user interface for listening to the device

that uses buttons to start and stop the listening. In fact, this would be a
great way to make a musical game – maybe one that teaches you how to
play the keyboard, or one in which certain correctly-played chords power

the lasers you use to eliminate the alien enemy.

Listening for a set duration of time instead of using the start/stop
methods is pretty easy. Instead of that call to

transmitter.startListening(), you can instead say:

transmitter.listenForMillis(15000);

And, in this example, you will be able to get your music 15 seconds later.
This method will actually wait for the specified time, so keep that in mind

if you are working with threads.

Using MusicTransmitterToParserListener is roughly identical. The

difference is that you first need to call addParserListener() to add a

ParserListener (you can add as many as you like), and instead of calling

transmitter.getSequence() at the end, you call methods directly on

your ParserListeners. Remember that if you are experimenting with this

capability, you could use the DiagnosticParserListener as a quick tool

to see that music is being sent and your code is working as you expect.

Troubleshooting Your Connections

If you are having difficulty getting the examples to run, try plugging your

MIDI-to-USB cable in a different USB port, and make sure that you are
using a driver from the manufacturer of the MIDI-to-USB cable rather
than the manufacturer of your MIDI device.

If you have your MIDI device hooked up to your computer and the
examples above compile and run without errors, but you aren’t getting

the music you’d expect, try swapping the In/Out MIDI connectors on the
MIDI device. The OUT connector on the MIDI-to-USB cable needs to be

plugged into the IN port on the MIDI keyboard, and the IN connector
needs to be plugged into the OUT port.

The Complete Guide to JFugue

 165

Part 7

Extras and Examples

The Complete Guide to JFugue

 166

 “Tout par compas suy composes”

by Baude Cordier (ca. 1380 – ca. 1440)

The Complete Guide to JFugue

 167

7.1

A Quartet of Demonstrations

This chapter presents four demonstrations that showcase the use of
everything you have learned so far.

J. S. Bach’s Crab Canon with Tokens and Pattern Reversal

Johann Sebastian Bach was known for playfully experimenting with
music through his various fugues, canons, and other compositions. One

of his pieces, part of his “A Musical Offering” collection, is the Crab
Canon. The Crab Canon consists of a sequence of notes played in
harmony with the reverse of the same sequence of notes. In his book

Gödel, Escher, Bach, Douglas Hofstadter refers to this piece in a
remarkable dialog that is presented as a palindrome.

This example splits a Pattern into Tokens so it can create a reverse
sequence of notes. Each note in the transformed set is also lowered by

one octave. It is worth noting that reversing a pattern is not always

trivial. For a pattern consisting simply of notes, like "G5h A5q Bb5i", it is

easy to see that the reverse would be "Bb5i A5q G5h". Or, should the

reverse be "Bb5h A5q G5i" – reversing the values of the notes but

maintaining durations in the same place? Regardless, the problem gets

even trickier when you add voice and instruments. The reverse of "V0

The Complete Guide to JFugue

 168

I[Piano] A B C V1 I[Flute] D E F" (let’s call this Pattern 2) is

definitely not "F E D I[Flute] V1 C B A I[Piano] V0" because the voice

and instrument changes are clearly intended to modify the notes that
follow them! So, one might think (as I started to) that perhaps in
Staccato, there are tokens that get reversed, and tokens that maintain

their position. It was easy enough for me to write a reversing function

that might correctly reverse Pattern 2 as "V0 I[Piano] C B A V1

I[Flute] D E F". Better! But then, what happens to "V0 I[Piano] A B

V1 I[Flute] C V0 I[Piano] D E" – should this be "V0 I[Piano] E D V1

I[Flute] C V0 I[Piano] B A"? In the first case, V1’s C is played at the

same time as V0’s A. In the second case, V1’s C is played with V0’s E. Is

that correct? Well, yes and no. The voices are reversed properly, if that

was the intention of the person doing the reversing, but the timing was

not preserved. So instead, this could be reverse-justified as …V1 I[Flute]

Rq Rq Rq Rq C…, but is that right? This discussion is why there is no

ReversePatternTransformer in JFugue 5.0.

Back to the Crab Canon! All we want to do is simply reverse a bunch of

things that we know will only be notes, and we want them to maintain
their duration, so this is easy. Let’s start by taking a look at the pattern
we want to change. Here is Bach’s upper melody for the Crab Canon.

// Upper melody of Bach’s Crab Canon

Pattern meloldy1 = new Pattern("D5h E5h A5h Bb5h C#5h Rq A5q "+

 "A5q Ab5h G5q G5q F#5h F5q F5q E5q Eb5q D5q "+

 "C#5q A5q D5q G5q F5h E5h D5h F5h A5i G5i A5i "+

 "D6i A5i F5i E5i F5i G5i A5i B5i C#6i D6i F5i "+

 "G5i A5i Bb5i E5i F5i G5i A5i G5i F5i E5i F5i "+

 "G5i A5i Bb5i C6i Bb5i A5i G5i A5i Bb5i C6i D6i "+

 "Eb6i C6i Bb5i A5i B5i C#6i D6i E6i F6i D6i "+

 "C#6i B5i C#6i D6i E6i F6i G6i E6i A5i E6i D6i "+

 "E6i F6i G6i F6i E6i D6i C#6i D6q A5q F5q D5q");

Now we want the reverse of that. We’ll call this the “simple reverse,” and
it goes like this… plus, we’ll change the octave of the note while we’re at

it. Notice the use of Note’s changeValue() (which takes a delta from the

current note value) and Note.OCTAVE to help make this easy, and the

prepend() method on Pattern to add to the beginning of the pattern

instead of the end:

 // Create second melody using a simple reverse

 Pattern melody2 = new Pattern();

 for (Token token : melody1.getTokens()) {

 Note note = new Note(token.toString())

 .changeValue(-Note.OCTAVE);

 melody2.prepend(note);

 }

The Complete Guide to JFugue

 169

Now all we have to do is set some voices and instruments on both
patterns, and play them!

 melody1.setVoice(0).setInstrument("Piano");

 melody2.setVoice(1).setInstrument("Piano");

 Player player = new Player();

 player.play(melody1, melody2);

And there you have it, Bach’s Crab Canon! This boils down to about nine
lines of code. Honestly, I think Bach would have been a huge fan of

JFugue if he were around to experience it, and he would have played
with something like this.

Lindenmayer System Music with a Replacement Map

The Hungarian theoretical botanist Aristid Lindenmayer originally

developed Lindenmayer systems, or L-systems, to formally describe the
development of types of algae; this was later used to represent plants and

fractals. An L-system is a grammar rewrite system, which means it
consists of a set of rules for replacing one character in a string with a
sequence of other characters. For example, if I give you a string, like “A”,

and tell you to change every “A” to “B”, and every “B” to “AB”, you’ll wind
up with the following sequence of strings:

Initial string A

Iteration 1 B

Iteration 2 AB

Iteration 3 BAB

Iteration 4 ABBAB

Iteration 5 BABABBAB

Iteration 6 ABBABBABABBAB

Iteration 7 BABABBABABBABBABABBAB

…and so on

If you then take the resulting string and convert the characters to some
actionable result—for example, drawing a picture using A and B as

commands for moving a pen on a drawing surface—you may get an
interesting result. You can see some cool results on the Wikipedia page

for L-system, and some especially beautiful results are presented in the
book, “The Algorithmic Beauty of Plants” by Przemyslaw Prusinkiewicz
and Aristid Lindenmayer. This book is now available for free on the site.

What does this have to do with music? L-systems exhibit self-similarity
(which is why L-system fractals are interesting), and music itself is often

self-similar. And instead of transforming characters, we can actually
transform Staccato tokens! Of course, we also know that we can play

Staccato tokens, so we have our actionable result. Here’s an example;

you can follow along with the code below by finding LSystemMusic.java

in the demo section of the JFugue library.

http://en.wikipedia.org/wiki/Lindenmeyer_system
http://en.wikipedia.org/wiki/Lindenmeyer_system
http://algorithmicbotany.org/

The Complete Guide to JFugue

 170

First, let’s create a set of transform rules. When the preprocessor sees
the key, it will replace it with the value. Notice that the values contain

things that will be recognized as keys during the next iteration.

// Specify the transformation rules for this Lindenmayer system

Map<String, String> rules = new HashMap<String, String>() {{

 put("Cmajw", "Cmajw Fmajw");

 put("Fmajw", "Rw Bbmajw");

 put("Bbmajw", "Rw Fmajw");

 put("C5q", "C5q G5q E6q C6q");

 put("E6q", "G6q D6q F6i C6i D6q");

 put("G6i+D6i", "Rq Rq G6i+D6i G6i+D6i Rq");

}};

Next, we will set up the ReplacementMapPreprocessor, including setting

the number of iterations to three and eliminating the need forangle

brackets around the keys—and we will also provide the replacement
map.

// Set up the ReplacementMapPreprocessor to iterate 3 times

// and not require brackets around replacements

ReplacementMapPreprocessor rmp =

ReplacementMapPreprocessor.getInstance();

rmp.setReplacementMap(rules);

rmp.setIterations(3);

rmp.setRequireAngleBrackets(false);

Now we just have to create the “axiom” – the initial string that will be

transformed. We will put this into a Pattern.

// Create a Pattern that contains the L-System axiom

Pattern axiom = new Pattern("T120 " + "V0 I[Flute] Rq C5q "

 + "V1 I[Tubular_Bells] Rq Rq Rq G6i+D6i "

 + "V2 I[Piano] Cmajw E6q "

 + "V3 I[Warm] E6q G6i+D6i "

 + "V4 I[Voice] C5q E6q");

And now to play the result!

Player player = new Player();

player.play(axiom);

The music you are listening to now is a piece called “Kebu”, which I
originally created in 2007 and which I describe in detail on my website in
an article describing a small portion of my work in algorithmic music.

http://davekoelle.com/algmusic.html

The Complete Guide to JFugue

 171

Music Quiz with Chords, MIDI Device Input, and a Custom
ParserListener

I’m sure you’ve seen games where you need to play the note running

across a staff before the note reaches the end of the staff (or, perhaps, is
eaten by a monster, or set on fire, or some variation). In this custom
JFugue game, you’ll need to find all of the notes in a chord, and you’ll

need to play them on your MIDI keyboard! Quick, what are the notes in a
Bb diminished seventh chord?

For the sake of simplicity, we’ll forego a graphical user interface in this
game, and we won’t use a timer. You can have as much time as you want

to find the notes in that Bb diminished seventh chord – as long as you
don’t press a wrong note!

The game consists of three main parts. First, we’ll connect to a MIDI
device. Next, we’ll create the logic that generates random chords. Finally,

we’ll create a ParserListener that knows when the notes in the chord
have been played.

First, we need a class. Let’s call it ChordGame, and we’ll give it a main()

method. We’ll need to either catch or throw a MidiUnavailableException

when we get to the device part, so let’s just do that now.

public class ChordGame {

 public static void main(String[] args) throws

MidiUnavailableException {

Great! Now, let’s connect to your attached MIDI keyboard. We’ll need to
use onf of the two MusicTransmitter classes – either

MusicTransmitterToParserListener or MusicTransmitterToSequence.

When the player plays keys on the keyboard, we’ll want to know about it
and react to it, so that indicates that we should use the ParserListener
variant.

We can use the MidiDevicePrompt that is part of JFugue’s developer

tools. If you were creating a real application that you wanted to share
with others, you would do something more professional here. But for the

sake of demonstration, this is perfectly acceptable.

Finally, we’ll need to attach a ParserListener. Let’s call it a

ChordGameParserListener, and we’ll worry about the logic a little bit

later.

MusicTransmitterToParserListeners transmitter = new

 MusicTransmitterToParserListeners(

 MidiDevicePrompt.askForMidiDevice());

ChordGameParserListener listener = new ChordGameParserListener();

The Complete Guide to JFugue

 172

transmitter.addParserListener(listener);

Now we’re connected to the listener and we’re ready to start the game!

We’ll create chords using a root note plus a chord name. Fortunately, the
Note and Chord classes make it easy to get the full range of allowable
notes and chords with one line of code each!

String[] rootNames = Note.NOTE_NAMES_COMMON;

String[] chordNames = Chord.getChordNames();

Now for a little game logic. We’ll keep track of the number of correct

guesses, and we’ll set the total number of guesses in a variable. Let’s also
create an instance of Java’s Random so we can pick a root and chord at
random.

int correctGuesses = 0;

int totalGuesses = 10;

Random rnd = new Random();

Time for the game! It’s easy enough to create a new chord, as shown
below. Let’s also use the human readable string for the chord so we’re

not presenting the player with a Staccato string.

for (int i=0; i < totalGuesses; i++) {

 Chord chord = new Chord(

 rootNames[rnd.nextInt(rootNames.length)] +

 chordNames[rnd.nextInt(chordNames.length)]);

 System.out.println("Play " + chord.toHumanReadableString());

Now that we’ve show the player what chord we want them to play, we

need to wait for them to play it! We’ll write the ChordGameParserListener
in a bit. In the meantime, we know that we want the player to play the
chord, and whether they get it correct or incorrect, we want to keep track

of that. At the end of totalGuesses, we’ll print the player’s results.

ChordGameParserListener.GameState gameState =

listener.waitForChord(chord);

if (gameState == ChordGameParserListener.GameState.CORRECT) {

 System.out.println("CORRECT! \n\n");

 correctGuesses++;

} else {

 System.out.println("Incorrect. \n\n");

}

} // closing for loop

System.out.println("You guessed " + correctGuesses +

 " chords correctly out of " + totalGuesses + " challenges!");

transmitter.close();

} // closing main()

The Complete Guide to JFugue

 173

Now it’s time for that ParserListener! We’re only interested in

onNoteParsed(), so since we only care about one method, we should

extend ParserListenerAdapter and override onNoteParsed(). We also

know that we’ll need to implement waitForChord(). Let’s do that first,

since it helps us think about what state we’ll need to maintain in the

listener.

waitForChord() will take a chord. It will need to know what notes are

part of that chord (easy with Chord’s API!). It will need to set up a

variable so it knows whether each note in the chord has been played.
And, it will need to know about game state, and only return when the
chord is either played completely, or the player has made a mistake.

In other words:

public GameState waitForChord(Chord chord) {
 this.expectedNotes = chord.getNotes();

 this.notesMatched = new boolean[this.expectedNotes.length];

 this.gameState = GameState.GUESSING;

 // Waituntil the state changes to either CORRECT or WRONG

 while (gameState == GameState.GUESSING) {

 try {Thread.sleep(50);} catch(InterruptedException e) { }

 }

 return gameState;

}

That makes it clear that we’ll need three variables as state for our class –

and we’ll need to initialize these in the constructor:

class ChordGameParserListener extends ParserListenerAdapter {

 private Note[] expectedNotes;

 private boolean[] notesMatched;

 private GameState gameState;

 public ChordGameParserListener() {

 expectedNotes = new Note[] { };

 notesMatched = new boolean[] { };

 gameState = GameState.GUESSING;

 }

Now all we have to do is react to when a note is played. If the player

plays a note that is in the chord – regardless of octave (so, we’ll use

Note’s getPositionInOctave() so we can be octave-agnostic) – we’ll keep

track in notesMatched that the corresponding note has been played. If

the player makes a mistake, we’ll change the game state to indicate that.

The Complete Guide to JFugue

 174

And once notesMatched is full of TRUE values, we’ll know we have a

successful chord!

@Override

public void onNoteParsed(Note note) {

 // If the note played matches one of the notes expected, yay!

 boolean matchFound = false;

 for (int i=0; i < expectedNotes.length; i++) {

 if (expectedNotes[i].getPositionInOctave() ==

 note.getPositionInOctave()) {

 notesMatched[i] = true;

 }

 }

 // If the player played an unexpected note, that's wrong!

 if (!matchFound) {

 this.gameState = GameState.WRONG;

 }

 // If we haven't yet matched all chord notes, exit

 for (int i=0; i < notesMatched.length; i++) {

 if (!notesMatched[i]) return;

 }

 // If we've gotten this far, all of the notes have matched!

 this.gameState = GameState.CORRECT;

}

public enum GameState { GUESSING, CORRECT, WRONG };

} // Close ChordGameParserListener

There you go – your very own chord game!

Virtual Instrument with Realtime Player and Notes from Intervals

The RealtimePlayer lets you play notes, patterns, and other musical

events in realtime (which makes it a pretty well-named class). This is

different from the typical Player, which first sends your entire Staccato

string to a StaccatoParser to be parsed, and then played in not-realtime.

One of the best uses of the RealtimePlayer is to create something that

plays music in response to user interaction. Let’s create something that a

user can interact with!

The typical example here might be to draw several piano keys, or maybe

some guitar strings, and let a person tickle the ivory or pluck the strings.
Or, we could take advantage of the medium and create something

colorful, different, and interesting to explore. Introducing… a pile of
randomly colored shapes!

The Complete Guide to JFugue

 175

Figure 15. The Virtual Instrument

100 rectangles, to be exact. Each rectangle contains a note, and you can
use the mouse to click on a rectangle and hear its note. If you click on a
spot that has overlapping rectangles, you’ll hear all of the notes for each

of the overlapping rectangles. In other words, where the rectangles
overlap, you’ll hear a chord. Here are some of the first bits of code of this

novel virtual instrument.

public class VirtualInstrument extends JPanel implements

MouseListener {

 private List<InstrumentZone> instrumentZones;

 private RealtimePlayer player;

 private Note[] notes;

 public VirtualInstrument() throws MidiUnavailableException {

 super();

 this.instrumentZones = new ArrayList<InstrumentZone>();

 this.addMouseListener(this);

 this.player = new RealtimePlayer();

The Complete Guide to JFugue

 176

 this.player.play("I[Crystal]");

 this.notes = new Chord(new Note("C"), new Intervals("1 2

3 5 6")).getNotes();

 createInstrumentZones();

 }

We’re just getting started, but let’s take a look at a few things here. First,

as promised, we’ve using the RealtimePlayer. Next, we’re going to use

the "I[Crystal]" instrument, which is an interesting instrument that

you may not have heard before. For this application, it’s nice because the
sound of the instrument fades away after a while, as opposed to

something like a Flute that keeps playing forever. That’s important
because of how we’ll let the user interact with this instrument: When

they press the mouse button on the rectangles, they will start playing
their notes, and when the user releases the mouse button over the same
rectangle, they will stop playing their notes… but if the user moves to a

different area, the notes won’t get a chance to stop on their own.
Choosing an instrument like the Crystal lets those notes fade away

without being explicitly turned off.

We will also pull notes from a "1 2 3 5 6" interval. That’s the Major

Pentatonic Scale. If you like, you can instead try a Chinese Scale like "1

3 #4 5 7", or any other scale you might find interesting. We’ll use this

scale to create a chord – which means the chord will contain each note in
the scale – and we’ll pull the notes from the chord.

Next, we’ll create a bunch of “Instrument Zones” – in other words,
rectangles. But not just rectangles! Rectangles that have color and play

music. That includes creating the note that each of the zones will play.
We’ll build that note using one of the tones from the chord and a

randomly selected octave. And, we’ll override VirtualInstrument’s

paint() method to delegate to the rectangles so they can paint

themselves.

 private void createInstrumentZones() {

 Random rnd = new Random();

 for (int i=0; i < VirtualInstrument.NUM_ZONES; i++) {

 int x = rnd.nextInt(VirtualInstrument.WIDTH -

VirtualInstrument.MAX_RECT_WIDTH);

 int y = rnd.nextInt(VirtualInstrument.HEIGHT -

VirtualInstrument.MAX_RECT_HEIGHT);

 int w = VirtualInstrument.MIN_RECT_WIDTH +

rnd.nextInt(VirtualInstrument.MAX_RECT_WIDTH -

VirtualInstrument.MIN_RECT_WIDTH);

 int h = VirtualInstrument.MIN_RECT_HEIGHT +

rnd.nextInt(VirtualInstrument.MAX_RECT_HEIGHT -

VirtualInstrument.MIN_RECT_HEIGHT);

The Complete Guide to JFugue

 177

 Color color = new Color(rnd.nextFloat(),

rnd.nextFloat(), rnd.nextFloat(), 0.8f);

 Note note = new

Note(notes[rnd.nextInt(notes.length)].toString() + (2 +

(rnd.nextInt(4))));

 instrumentZones.add(new InstrumentZone(x, y, w, h,

color, player, note));

 }

 }

 @Override

 public void paint(Graphics g) {

 super.paint(g);

 Graphics2D g2 = (Graphics2D)g;

 g2.setPaint(new GradientPaint(new

Point2D.Double(VirtualInstrument.WIDTH / 2.0, 0.0),

Color.LIGHT_GRAY, new Point2D.Double(VirtualInstrument.WIDTH /

2.0, VirtualInstrument.HEIGHT), Color.BLACK));

 g2.fillRect(0, 0, VirtualInstrument.WIDTH,

VirtualInstrument.HEIGHT);

 for (InstrumentZone izone : instrumentZones) {

 izone.paint(g2);

 }

 }

We’ll also delegate to the rectangles when the user presses or releases

the mouse button. For the other MouseListener events that we don’t

need, we’ll create empty implementations. (Actually, you could do
something interesting, like have a rectangle light up when the mouse

enters it, but I’ll leave that as an exercise for the reader.)

 @Override

 public void mousePressed(MouseEvent event) {

 for (InstrumentZone izone : instrumentZones) {

 izone.mousePressed(event.getPoint());

 }

 }

 @Override

 public void mouseReleased(MouseEvent event) {

 for (InstrumentZone izone : instrumentZones) {

 izone.mouseReleased(event.getPoint());

 }

 }

 @Override public void mouseClicked(MouseEvent e) { }

 @Override public void mouseEntered(MouseEvent e) { }

 @Override public void mouseExited(MouseEvent e) { }

The Complete Guide to JFugue

 178

Now for a main() method, which will create a JFrame and display the

instrument. And a couple of static integers – placing these values in one
spot here lets you change the appearance of the virtual instrument in
one easy-to-find place.

 public static void main(String[] args) throws

MidiUnavailableException {

 JFrame frame = new JFrame("JFugue - Virtual Instrument

Demo");

 frame.setSize(VirtualInstrument.WIDTH,

VirtualInstrument.HEIGHT);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new VirtualInstrument(),

BorderLayout.CENTER);

 frame.setVisible(true);

 }

 private static int WIDTH = 800;

 private static int HEIGHT = 600;

 private static int MIN_RECT_WIDTH = 50;

 private static int MAX_RECT_WIDTH = 200;

 private static int MIN_RECT_HEIGHT = 50;

 private static int MAX_RECT_HEIGHT = 200;

}

Let’s take a look at one of these Instrument Zones. It’s quite simple: the
constructor takes, among other things, an instance of the

RealtimePlayer and the Note that will be played when the user presses

the mouse button over this zone.

class InstrumentZone {

 public int x, y, width, height;

 public Paint paint;

 public RealtimePlayer realtimePlayer;

 public Note note;

 public InstrumentZone(int x, int y, int width, int height,

Paint paint, RealtimePlayer player, Note note) {

 this.x = x;

 this.y = y;

 this.width = width;

 this.height = height;

 this.paint = paint;

 this.realtimePlayer = player;

 this.note = note;

 }

 public void paint(Graphics2D g2) {

 g2.setPaint(this.paint);

 g2.fillRect(x, y, width, height);

The Complete Guide to JFugue

 179

 }

 public void mousePressed(Point2D point) {

 if (((point.getX() >= x) && (point.getX() <= x + width))

&& ((point.getY() >= y) && (point.getY() <= y + height))) {

 realtimePlayer.startNote(note);

 }

 }

 public void mouseReleased(Point2D point) {

 if (((point.getX() >= x) && (point.getX() <= x + width))

&& ((point.getY() >= y) && (point.getY() <= y + height))) {

 realtimePlayer.stopNote(note);

 }

 }

}

That’s it! Run this instrument and have fun!

The Complete Guide to JFugue

 180

7.2

Tests, Demos, and Examples
in the Source Code Distribution

So far, all of the material in this book has covered the main JFugue code,
which exists in the src/main/java. This is one of several high-level

folders, and in this chapter, you will learn more about what to expect
(and how to use) the source code in the other folders.

src/main

The code in the java folder, and the staccato.properties file in the

resources folder, generate the class files that are put into the JFugue jar

file. All of the code that makes JFugue work is included in these folders.

src/test

This folder is full of JUnit test cases. In general, there is a test case for
each class in the main JFugue code. Each test case can be run

individually, or the whole suite of tests can be run; in fact, successfully
passing the tests is a necessary condition for JFugue’s build script to
generate a jar for use as a beta version or for distribution. There is one

audible test in these test cases which is a sanity check to ensure that
basic musical output is correct.

The Complete Guide to JFugue

 181

src/manualtest

The manualtest folder contains programs that serve as test cases but

they are not JUnit tests cases. They are runnable programs that are
meant to test musical output from the JFugue classes they test.

Determining whether these tests run successfully is a subjective
measure – they need to be listened to. When these tests are run, they use

ManualTestPrint.expectedResult() to output a description of the

expected result of the test to the console. This is how you know what to

listen for when running one of these tests. If you ever create a new

manual test, please be sure to use ManualTestPrint.expectedResult() to

describe the expected outcome of your test.

src/demo

The demo folder contains demonstration use cases for most of the

JFugue classes. If there is a particular class that you are interested in –

say, the Rhythm or MusicReceiver class – you will find a corresponding

RhythmDemo or MusicReceiverDemo class. The source code of the

demonstrations is rather well documented, and some of the demos
display output in the console to let you know what you are hearing as

the demo runs.

src/examples

The examples folder is where you will find the source code that appears

in this book and on the JFugue.org website.

The Complete Guide to JFugue

 182

7.3

Building and Testing JFugue

So far, all of the material in this book has covered the use of JFugue as a
library. But what if you want to make your own changes to JFugue and

build a new jar yourself?

Building JFugue

JFugue has an build.xml file for use with Apache Ant. The build file

contains the targets described in Table 14.

Build Target Description Depends on

init Creates a timestamp that is used
by some of the other targets

(none)

compile Runs javac on src/main, creating
target/main

init

betajar Creates a jar with the classes in
target/main and gives the jar file

a filename with the timestamp

compile

compile-test Runs javac on src/test, creating

target/test

compile

The Complete Guide to JFugue

 183

test Runs the tests (none)

clean Deletes the files in target/src and
target/main

(none)

build Runs the clean, compile, and test
targets

clean,

compile,

test

doc Generates the JavaDoc for the
code in src/main

(none)

zip-doc Zips the JavaDoc doc

zip-source Zips the sources (none)

betadist Creates a src zip, doc zip, and jar

file, and gives each of those three
files a filename with a timestamp

build, doc

dist Creates a jar file and relies on
zip-source and zip-doc to create
their zips

build, zip-

source, zip-

doc

Table 14. Build targets in build.xml

Testing JFugue

JFugue comes with an excellent set of unit tests. If you make changes to

the code, you should always check that all of the unit tests pass
successfully.

Also, be sure to add new unit tests for any new code you create. And, feel
free to contribute unit tests for those areas of JFugue that do not
currently have much test coverage.

The JFugueTestHelper class comes with a method that makes it easy to

check the results of passing a string to the StaccatoParser and checking

the result. This is the compare() method, which takes three parameters:

The string to parse, a string representing the expected event type (e.g.,
the event fired to a ParserListener), and an object representing the

expected object. There are a bunch of compare() methods in

JFugueTestHelper that all have different object parameters, and at the

end of the class file you will also find a set of static final strings for the

event names. The compare() method compares the second-to-last event

that the ParserListener receives. The last event will always be a

afterParsingFinished() event, so we can skip that one. But if you are

testing a Staccato string that will send multiple events, realize that you
can only check against the last non-finished event.

The Complete Guide to JFugue

 184

Here are some examples that use the compare() method within JUnit’s

assertTrue() method.

assertTrue(compare("C", NOTE_PARSED, new Note(60)));

assertTrue(compare("C0", NOTE_PARSED, new

Note(0).setOctaveExplicitlySet(true)));

assertTrue(compare("C-w-", NOTE_PARSED, new

Note(60).setDuration(1.0d).setStartOfTie(true).setEndOfTie(true))

);

assertTrue(compare("#(three word marker)", MARKER_PARSED, "three

word marker"));

assertTrue(compare(":PITCHBEND(16008)", PITCH_WHEEL_PARSED,

(byte)8, (byte)125));

assertTrue(compare("@200", TRACK_BEAT_TIME_REQUESTED, 200.0D));

The Complete Guide to JFugue

 185

7.4

Short JFugue Programs

One of the exciting benefits of JFugue’s easy-to-use API is that it

provides a fun and accessible introduction to programming for young
people who are learning how to write their first programs. In fact, JFugue
has already been used in a few high schools around the world, and some

of the classes have even contributed code back to the JFugue project.
University students from around the world are also using JFugue in their

projects.

"Hello, World" in JFugue

Create music with only a few lines of code!

import org.jfugue.player.Player;

public class HelloWorld {

 public static void main(String[] args) {

 Player player = new Player();

 player.play("C D E F G A B");

 }

}

The Complete Guide to JFugue

 186

Playing multiple voices, multiple instruments, rests, chords, and
durations

This example uses the Staccato 'V' command for specifying voices, 'I' for

specifying instruments (text within brackets is looked up in a dictionary
and maps to MIDI instrument numbers), '|' (pipe) for indicating
measures (optional), durations including 'q' for quarter duration, 'qqq' for

three quarter notes (multiple durations can be listed together), and 'h' for
half, 'w' for whole, and '.' for a dotted duration; 'R' for rest, and the

chords G-Major and C-Major. Whitespace is not significant and can be
used for visually pleasing or helpful spacing.

import org.jfugue.player.Player;

public class HelloWorld2 {

 public static void main(String[] args) {

 Player player = new Player();

 player.play("V0 I[Piano] Eq Ch. | Eq Ch. | Dq Eq Dq Cq V1

I[Flute] Rw | Rw | GmajQQQ CmajQ");

 }

}

Introduction to Patterns

Patterns are one of the fundamental units of music in JFugue. They can

be manipulated in musically interesting ways.

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

public class IntroToPatterns {

 public static void main(String[] args) {

 Pattern p1 = new Pattern("V0 I[Piano] Eq Ch. | Eq Ch. | Dq Eq

Dq Cq");

 Pattern p2 = new Pattern("V1 I[Flute] Rw | Rw |

GmajQQQ CmajQ");

 Player player = new Player();

 player.play(p1, p2);

 }

}

Introduction to Patterns, Part 2

Voice and instruments for a pattern can also be set through the API. In
JFugue, methods that would normally return 'void' instead return the
object itself, which allows you do chain commands together, as seen in

this example.

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

The Complete Guide to JFugue

 187

public class IntroToPatterns2 {

 public static void main(String[] args) {

 Pattern p1 = new Pattern("Eq Ch. | Eq Ch. | Dq Eq Dq Cq")

 .setVoice(0).setInstrument("Piano");

 Pattern p2 = new Pattern("Rw | Rw | GmajQQQ CmajQ")

 .setVoice(1).setInstrument("Flute");

 Player player = new Player();

 player.play(p1, p2);

 }

}

Introduction to Chord Progressions

It's easy to create a Chord Progression in JFugue. You can then play it,

or you can see the notes that comprise the any of the chords in the
progression.

import org.jfugue.player.Player;

import org.jfugue.theory.Chord;

import org.jfugue.theory.ChordProgression;

import org.jfugue.theory.Note;

public class IntroToChordProgressions1 {

 public static void main(String[] args) {

 ChordProgression cp = new ChordProgression("I IV V");

 Chord[] chords = cp.setKey("C").getChords();

 for (Chord chord : chords) {

 System.out.print("Chord "+chord+" has these notes: ");

 Note[] notes = chord.getNotes();

 for (Note note : notes) {

 System.out.print(note+" ");

 }

 System.out.println();

 }

 Player player = new Player();

 player.play(cp);

 }

}

Advanced Chord Progressions

You can do some pretty cool things with chord progressions. The

methods below use $ to indicate an index into either the chord

progression (in which case, the index points to the nth chord), or a
specific chord (in which case the index points to the nth note of the

chord). Underscore means "the whole thing". If you change the indexes,

make sure you don't introduce an ArrayOutOfBoundsException (for

The Complete Guide to JFugue

 188

example, a major chord has only three notes, so trying to get the 4th

index, $3 (remember that this is zero-based), would cause an error).

import org.jfugue.player.Player;

import org.jfugue.theory.ChordProgression;

public class AdvancedChordProgressions {

 public static void main(String[] args) {

 ChordProgression cp = new ChordProgression("I IV V");

 Player player = new Player();

 player.play(cp.allChordsAs("$0 $0 $0 $0 $1 $1 $2

$0").eachChordAs("V0 $0s $1s $2s Rs V1 $_q"));

 }

}

Twelve-Bar Blues in Two Lines of Code

Twelve-bar blues uses a I-IV-V chord progression. But really, it's the
Major 7ths that you'd like to hear... and if you want to play each chord in

arpeggio, you need a 6th in there as well. But creating a I7%6-IV7%6-
V7%6 chord progression is messy. So, this code creates a I-IV-V
progression, then distributes a 7%6 across each chord, then creates the

twelve bars, and then each chord is played as an arpeggio with note
dynamics (note on velocity - how hard you hit the note). Finally, the

pattern is played with an Acoustic_Bass instrument at 110 BPM. With all

of the method chaining, that is kinda done in one line of code.

import java.io.IOException;

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

import org.jfugue.theory.ChordProgression;

public class TwelveBarBlues {

 public static void main(String[] args) throws IOException {

 Pattern pattern = new ChordProgression("I IV V")

 .distribute("7%6")

 .allChordsAs("$0 $0 $0 $0 $1 $1 $0 $0 $2 $1 $0

$0")

 .eachChordAs("$0ia100 $1ia80 $2ia80 $3ia80

$4ia100 $3ia80 $2ia80 $1ia80")

 .getPattern()

 .setInstrument("Acoustic_Bass")

 .setTempo(100);

 new Player().play(pattern);

 }

}

The Complete Guide to JFugue

 189

Introduction to Rhythms

One of my favorite parts of the JFugue API is the ability to create

rhythms in a fun and easily understandable way. The letters are mapped
to percussive instrument sounds, like "Acoustic Snare" and "Closed Hi
Hat". JFugue comes with a default "rhythm set", which is a

Map<Character, String> with entries like this: put('O',

"[BASS_DRUM]i").

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

import org.jfugue.rhythm.Rhythm;

import org.jfugue.theory.ChordProgression;

public class IntroductionToRhythms2 {

 public static void main(String[] args) {

 // Create a rhythm

 Rhythm rhythm = new Rhythm();

 rhythm.addLayer("O..oO...O..oOO..");

 rhythm.addLayer("..S...S...S...S.");

 rhythm.addLayer("````````````````");

 rhythm.addLayer("...............+");

 // Create a chord progression, give it a key (with

duration), and make sure it always plays in Voice 1

 Pattern chords = new ChordProgression("I IV V

I").setKey("AbMINww").getPattern().setVoice(1);

 // Combine the chords and the rhythm

 Pattern combinedPattern = new Pattern(chords,

rhythm.getPattern().repeat(4));

 // Play the *combined* pattern twice (that will be 8

total occurrences the rhythm)

 Player player = new Player();

 player.play(combinedPattern.repeat(2));

 }

}

Advanced Rhythms

Through the Rhythm API, you can specify a variety of alternate layers
that occur once or recur regularly. You can even create your own

"RhythmAltLayerProvider" if you'd like to create a new behavior that does
not already exist in the Rhythm API.

import org.jfugue.player.Player;

import org.jfugue.rhythm.Rhythm;

The Complete Guide to JFugue

 190

public class AdvancedRhythms {

 public static void main(String[] args) {

 Rhythm rhythm = new Rhythm()

 .addLayer("O..oO...O..oOO..")

 .addLayer("..S...S...S...S.")

 .addLayer("````````````````")

 .addLayer("...............+")

 .addOneTimeAltLayer(3, 3, "...+...+...+...+")

 .setLength(4);

 new Player().play(rhythm.getPattern().repeat(2));

 }

}

All That, in One Line of Code?

Try this. The main line of code even fits within the 140-character limit of

a tweet.

import org.jfugue.player.Player;

import org.jfugue.rhythm.Rhythm;

import org.jfugue.theory.ChordProgression;

public class TryThis {

 public static void main(String[] args) {

 new Player().play(new ChordProgression("I IV vi

V").eachChordAs("$_i $_i Ri $_i"), new

Rhythm().addLayer("..X...X...X...XO"));

 }

}

See the Contents of a MIDI File in Human-Readable and
Machine-Parseable Staccato Format

Want to see the music in your MIDI file? Of course, you could load it in a
sheet music tool. Here's how you can load it with JFugue. You'll get a

Pattern of your music, which you can then pick apart in interesting ways
(for example, count how many "C" notes there are... that's coming up in a
few examples)

import java.io.File;

import java.io.IOException;

import javax.sound.midi.InvalidMidiDataException;

import org.jfugue.midi.MidiFileManager;

import org.jfugue.pattern.Pattern;

public class SeeMidi {

 public static void main(String[] args) throws IOException,

InvalidMidiDataException {

The Complete Guide to JFugue

 191

 Pattern pattern = MidiFileManager.loadPatternFromMidi(new

File("filename.mid"));

 System.out.println(pattern);

 }

}

Connecting Any Parser to Any ParserListener

You can use JFugue to convert between music formats. Most commonly,

JFugue is used to turn Staccato music into MIDI sound. Alternatively,
you can play with the MIDI, MusicXML, and LilyPond parsers and

listeners. Or, you can easily create your own parser or listener, and it will
instantly interoperate with the other existing formats. (And if you convert
to Staccato, you can then play the Staccato music... and edit it!)

import java.io.File;

import java.io.IOException;

import javax.sound.midi.InvalidMidiDataException;

import javax.sound.midi.MidiSystem;

import org.jfugue.midi.MidiParser;

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

import org.staccato.StaccatoParserListener;

public class ParserDemo {

 public static void main(String[] args) throws

InvalidMidiDataException, IOException {

 MidiParser parser = new MidiParser();

 StaccatoParserListener listener = new

StaccatoParserListener();

 parser.addParserListener(listener);

 parser.parse(MidiSystem.getSequence(new

File("filename.mid")));

 Pattern staccatoPattern = listener.getPattern();

 System.out.println(staccatoPattern);

 Player player = new Player();

 player.play(staccatoPattern);

 }

}

Create a Listener to Find Out About Music

You can create a ParserListener to listen for any musical event that any
parser is parsing. Here, we'll create a simple tool that counts how many

"C" notes (of any octave) are played in any song.

import java.io.File;

import java.io.IOException;

The Complete Guide to JFugue

 192

import javax.sound.midi.InvalidMidiDataException;

import javax.sound.midi.MidiSystem;

import org.jfugue.midi.MidiParser;

import org.jfugue.parser.ParserListenerAdapter;

import org.jfugue.theory.Note;

public class MyParserListenerDemo {

 public static void main(String[] args) throws

InvalidMidiDataException, IOException {

 MidiParser parser = new MidiParser();

 MyParserListener listener = new MyParserListener();

 parser.addParserListener(listener);

 parser.parse(MidiSystem.getSequence(new

File("filename.mid")));

 System.out.println("There are "+listener.counter+" 'C'

notes in this music.");

 }

}

class MyParserListener extends ParserListenerAdapter {

 public int counter;

 @Override

 public void onNoteParsed(Note note) {

 if (note.getPositionInOctave() == 0) {

 counter++;

 }

 }

}

Play Music in Realtime

Create interactive musical programs using the RealtimePlayer.

import java.util.Random;

import java.util.Scanner;

import javax.sound.midi.MidiUnavailableException;

import org.jfugue.pattern.Pattern;

import org.jfugue.realtime.RealtimePlayer;

import org.jfugue.theory.Note;

public class RealtimeExample {

 public static void main(String[] args) throws

MidiUnavailableException {

 RealtimePlayer player = new RealtimePlayer();

 Scanner scanner = new Scanner(System.in);

 Random random = new Random();

The Complete Guide to JFugue

 193

 boolean quit = false;

 while (quit == false) {

 System.out.print("Enter a '+C' to start a note, '-C'

to stop a note, 'i' for a random instrument, 'p' for a pattern,

or 'q' to quit: ");

 String entry = scanner.next();

 if (entry.startsWith("+")) {

 player.startNote(new Note(entry.substring(1)));

 }

 else if (entry.startsWith("-")) {

 player.stopNote(new Note(entry.substring(1)));

 }

 else if (entry.equalsIgnoreCase("i")) {

 player.changeInstrument(random.nextInt(128));

 }

 else if (entry.equalsIgnoreCase("p")) {

player.play(PATTERNS[random.nextInt(PATTERNS.length)]);

 }

 else if (entry.equalsIgnoreCase("q")) {

 quit = true;

 }

 }

 scanner.close();

 player.close();

 }

 private static Pattern[] PATTERNS = new Pattern[] {

 new Pattern("Cmajq Dmajq Emajq"),

 new Pattern("V0 Ei Gi Di Ci V1 Gi Ci Fi Ei"),

 new Pattern("V0 Cmajq V1 Gmajq")

 };

}

Anticipate Musical Events Before They Occur

You might imagine creating new types of ParserListeners, like an

AnimationParserListener, that depend on knowing about the musical

events before they happen. For example, perhaps your animation is of a
robot playing a drum or strumming a guitar. Before the note makes a

sound, the animation needs to get its virtual hands in the right place, so
you might want a notice 500ms earlier that a musical event is about to

happen. To bend time with JFugue, use a combination of the

TemporalPLP class and Player.delayPlay(). delayPlay() creates a new

thread that first waits the specified amount of time before playing. If you

do this, make sure to call delayPlay() before plp.parse().

import org.jfugue.devtools.DiagnosticParserListener;

import org.jfugue.player.Player;

import org.jfugue.temporal.TemporalPLP;

The Complete Guide to JFugue

 194

import org.staccato.StaccatoParser;

public class TemporalExample {

 private static final String MUSIC = "C D E F G A B"; // Feel

free to put your own music here to experiment!

 private static final long TEMPORAL_DELAY = 500; // Feel

free to put your own delay here to experiment!

 public static void main(String[] args) {

 // Part 1. Parse the original music

 StaccatoParser parser = new StaccatoParser();

 TemporalPLP plp = new TemporalPLP();

 parser.addParserListener(plp);

 parser.parse(MUSIC);

 // Part 2. Send the events from Part 1, and play the

original music with a delay

 DiagnosticParserListener dpl = new

DiagnosticParserListener();

 plp.addParserListener(dpl);

 new Player().delayPlay(TEMPORAL_DELAY, MUSIC);

 plp.parse();

 }

}

Use "Replacement Maps" to Create Carnatic Music

JFugue's ReplacementMap capability lets you use your own symbols in a

music string. JFugue comes with a CarnaticReplacementMap that maps
Carnatic notes to microtone frequencies.

import org.jfugue.player.Player;

import org.staccato.maps.CarnaticReplacementMap;

public class CarnaticReplacementMapDemo {

 public static void main(String[] args) {

 ReplacementMapPreprocessor.getInstance().setReplacementMap(

new CarnaticReplacementMap());

 Player player = new Player();

 player.play("<S> <R1> <R2> <R3> <R4>");

 }

}

Use "Replacement Maps" to Play Solfege

JFugue comes with a SolfegeReplacementMap, which means you can
program music using "Do Re Me Fa So La Ti Do." The

ReplacementMapParser converts those solfege tones to C D E F G A B.
Using Replacement Maps, which are simply Map<String, String>, you

The Complete Guide to JFugue

 195

can create any kind of music in a pattern that will be converted to
musical notes (or whatever you put in the values of your Map).

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

import org.staccato.ReplacementMapPreprocessor;

public class SolfegeReplacementMapDemo {

 public static void main(String[] args) {

 Player player = new Player();

 ReplacementMapPreprocessor rmp =

ReplacementMapPreprocessor.getInstance();

 rmp.setReplacementMap(new

SolfegeReplacementMap()).setRequireAngleBrackets(false);

 Pattern pattern = new Pattern("do re mi fa so la ti

do");

 System.out.println(rmp.preprocess(pattern.toString().toUppe

rCase(), null));

 rmp.setRequireAngleBrackets(true);

 player.play(new Pattern("<Do>q <Re>q <Mi>h | <Mi>q

<Fa>q <So>h | <So>q <Fa>q <Mi>h | <Mi>q <Re>q <Do>h"));

 }

}

Use "Replacement Maps" to Generate Fractal Music

A Lindenmayer system is a string rewriting system that can be used to
create fractal shapes. You can use JFugue's ReplacementMap capability
to create music based on string rewrite rules! (File this one under, "I

didn't intentionally create a fractal music tool, it just kinda happened.
Oops.")

import java.util.HashMap;

import java.util.Map;

import org.jfugue.pattern.Pattern;

import org.jfugue.player.Player;

import org.staccato.ReplacementMapPreprocessor;

public class LSystemMusic {

 public static void main(String[] args) {

 // Specify the transformation rules for this

Lindenmayer system

 Map<String, String> rules = new HashMap<String,

String>() {{

 put("Cmajw", "Cmajw Fmajw");

 put("Fmajw", "Rw Bbmajw");

http://mathworld.wolfram.com/LindenmayerSystem.html

The Complete Guide to JFugue

 196

 put("Bbmajw", "Rw Fmajw");

 put("C5q", "C5q G5q E6q C6q");

 put("E6q", "G6q D6q F6i C6i D6q");

 put("G6i+D6i", "Rq Rq G6i+D6i G6i+D6i Rq");

 put("axiom", "axiom V0 I[Flute] Rq C5q V1

I[Tubular_Bells] Rq Rq Rq G6i+D6i V2 I[Piano] Cmajw E6q V3

I[Warm] E6q G6i+D6i V4 I[Voice] C5q E6q");

 }};

 // Set up the ReplacementMapPreprocessor to iterate 3

times

 // and not require brackets around replacements

 ReplacementMapPreprocessor rmp =

ReplacementMapPreprocessor.getInstance();

 rmp.setReplacementMap(rules);

 rmp.setIterations(3);

 rmp.setRequireAngleBrackets(false);

 // Create a Pattern that contains the L-System axiom

 Pattern axiom = new Pattern("T120 " + "V0 I[Flute] Rq

C5q "

 + "V1 I[Tubular_Bells] Rq Rq Rq G6i+D6i "

 + "V2 I[Piano] Cmajw E6q "

 + "V3 I[Warm] E6q G6i+D6i "

 + "V4 I[Voice] C5q E6q");

 Player player = new Player();

 System.out.println(rmp.preprocess(axiom.toString(),

null));

 player.play(rmp.preprocess(axiom.toString(), null));

 }

}

The Complete Guide to JFugue

 197

Conclusion

Thank you again for using JFugue. I hope this book has clearly
communicated all of the wonderful things that JFugue can do. While the

benefits of JFugue are first evidenced by that simple player.play("C")

call, there’s really a lot more power to be discovered – and all of it is

designed to be as intuitive and easy-to-use as possible. I firmly believe
that if software isn’t easy to use, it won’t be used. If JFugue were not

easy to use, I would have wasted my time developing the tool, and you
wouldn’t be able to create and explore music in new and creative ways.
Fortunately, neither is true, and the world is a slightly happier place.

If you have enjoyed using JFugue, please share your joy with friends and
acquaintances. Post to blogs, mention JFugue in your books and

presentations, and so on. Help spread the word about this easy-to-use
API that resurrects some of the joy of programming.

If you have found this book to be enlightening and beneficial, please
communicate that, as well. The more encouragement that I get from

users of my software, the more likely I will be to develop additional tools
that are just as delightful and easy to use.

Have fun, and stay creative! -David Koelle

The Complete Guide to JFugue

 198

The Complete Guide to JFugue

 199

Appendix

Setting Up JFugue

JFugue makes programming music easy. This chapter explains how to
set up and get started with JFugue.

Downloading JFugue

The easiest way to start being productive with JFugue is to download the

jfugue.jar file and include it as a library in your own programs. You can

always obtain the latest jfugue.jar file from http://www.JFugue.org.

Personal Tip

When I download third-party libraries, I place
them into a folder called “C:\Java Libraries”,

where I extract the library’s compressed files,
including source files and JavaDoc. When I need

to use the jar file in a specific project, I make a
copy of the jar file and paste it into my project’s

lib directory.

Once you have the jfugue.jar file, you are ready to include it in your

program. Make sure that jfugue.jar appears in your classpath, or if you

are using an integrated development environment (IDE), include

jfugue.jar as a library.

http://www.jfugue.org/

The Complete Guide to JFugue

 200

Now you are ready to start writing programs with JFugue!

Java Version Compatibility

As of this writing, JFugue is compiled with Java

Runtime Environment (JRE) version 1.8.0

Running a Test Program

To be sure you are able to use JFugue after you download it, compile and

run the following program, which should be saved as HelloWorld.java.

import org.jfugue.player.Player;

public class HelloWorld {

 public static void main(String[] args) {

 Player player = new Player();

 player.play("C D E F G A B");

 }

}

To compile and run this program from a command prompt, follow the
following steps. If you are using an IDE, you may jump ahead to the next

section.

Step 1. To compile this program, enter this command at the command

prompt, replacing %JFUGUE_DIR% with the directory into which you have

placed jfugue.jar:

javac -classpath %JFUGUE_DIR%\jfugue.jar HelloWorld.java

This will compile MyMusicApp.java and generate a .class file.

Step 2. To run the .class file, enter this line:

java -cp %JFUGUE_DIR%\jfugue.jar;. HelloWorld

Be sure to copy this line exactly. The semicolon and period indicate

where Java will find the HelloWorld class – in the current (i.e., “.”)
directory.

Special Note for Mac Users

If you’re using a Mac, replace the semicolon (;)

with a colon (:).

Using JFugue from an Integrated Development Environment

If you’re using an Integrated Development Environment (IDE), like
Eclipse or NetBeans, you’ll need to include the JFugue jar file into your

project. If you’re using Eclipse (http://www.eclipse.org), go Project >

http://www.eclipse.org/

The Complete Guide to JFugue

 201

Properties, select Java Build Path, select the Libraries tab, and click the

“Add JARs…” or “Add External JARs…” button. Find jfugue.jar and

add it to your project.

Personal Tip

For each of my projects, I create a lib directory,

where I place third-party jar files.

To run the test program from Eclipse, right-click on the test program’s

filename and select Run As…> Java Application.

Using MIDI Soundbanks

JFugue relies on Java’s MIDI capabilities to produce music. Java MIDI

uses the Java Sound engine, which in turn uses a soundbank to
generate sounds using the synthesizer. A soundbank is a collection of

audio samples for each instrument that are played by the synthesizer. A
variety of soundbanks provided by Sun Microsystems are available for
free download; some of these may provide richer sounds than the default

soundbank that is packaged with the Java Runtime Environment (JRE).

In addition, there are third-party MIDI soundbanks that have incredibly

rich sound. Many of these are available for purchase only. Try doing an
online search for “midi sound bank” to see some examples.

Downloading Soundbanks

Soundbanks provided by Sun Microsystems can be downloaded from
http://www.oracle.com/technetwork/java/soundbanks-135798.html.
These same three soundbanks have been available for download for at

least ten years. My recommendation: Don’t bother with anything other
than Deluxe.

Minimal (0.35 MB)

This soundbank is packaged by default with Java SDK Standard
Edition versions 1.2.2 and higher. It is the smallest soundbank
available, and its sound samples are of slightly less quality than

those found in the midsize soundbank.

Midsize (1.09 MB)

This soundbank shipped with Java2 versions 1.2 and 1.2.1.

Deluxe (4.92 MB)

This soundbank contains higher-quality sound samples.

http://www.oracle.com/technetwork/java/soundbanks-135798.html

The Complete Guide to JFugue

 202

Installing the Java Media Soundbanks

Installing a soundbank is as simple as moving the file you’ve downloaded
to the correct directory.

First, download and unzip the soundbank you are interested in. You will
see a file with a “.gm” extension.

On Windows computers, move this file to

C:\Program Files\java\<jre version>\lib\audio. If there is no audio

directory, create it. In addition, if you are using a Java SDK that you’ve

downloaded, also copy the soundbank file to <jdk-install-

dir>\jre\lib\audio.

On Linux or Solaris machines, move the soundbank file to <install-

dir>/jre/lib/audio. If the audio directory does not exist, create it.

Java will automatically use the highest-quality soundbank available, so if

there is an existing soundbank file in the audio directory, you don’t have

to delete or rename it.

After you have moved your soundbank to the correct directory, be sure to
exit any running Java programs. When you start them up again, they will

use the new soundbanks.

The Complete Guide to JFugue

 203

Image Credits

Figures that include musical notation were created by the author using
NoteWorthy Composer from NoteWorthy Software, Inc.

The images of sheet music that decorate each of the major parts of the

book are all in the public domain.

Cover: See description on Page 4.

Before Table of Contents: Score of “Belle, bonne, sage” by Baude
Cordier. From The Chantilly Manuscript. The piece uses the red color to

show notes that have a different duration than the corresponding notes
in black.

- Image is under the Creative Commons Attribution-Share Alike 3.0
Unported license and was obtained from Wikimedia Commons: No

modifications were made to this image. Original image originated
between the years 1350 and 1400.
https://commons.wikimedia.org/wiki/File:CordierColor.jpg

- For more information on ars subtilior, the type of musical style that

this image demonstrates, see
https://en.wikipedia.org/wiki/Ars_subtilior

https://commons.wikimedia.org/wiki/File:CordierColor.jpg
https://en.wikipedia.org/wiki/Ars_subtilior

The Complete Guide to JFugue

 204

Part 1: The Ricecar a 6, a six-part fugue from Johann Sebastian Bach’s
“The Musical Offering” (BWV 1079), written in Bach’s hand.

- Image is in the public domain and obtained from Wikimedia

Commons:
https://commons.wikimedia.org/wiki/File:Ricercar_a_6_BWV_107
9.jpg

- For more information, see
https://en.wikipedia.org/wiki/The_Musical_Offering

Part 2: Front page of the autograph for J. S. Bach’s “Sonata for single

violin #1 in G minor” (BWV 1001)

- Image is in the public domain and obtained from Wikimedia

Commons: https://commons.wikimedia.org/wiki/File:Bwv1001-
adagio-handwriting.jpg

- For more information, see
https://en.wikipedia.org/wiki/Sonatas_and_partitas_for_solo_violi

n_%28Bach%29

Part 3: “The Walrus and the Carpenter” from “Songs from Alice in

Wonderland and Through the Looking-Glass”

- Image is in the public domain and obtained from Project

Gutenberg: http://www.gutenberg.org/files/36308/36308-
h/36308-h.htm

- According to
https://www.gutenberg.org/wiki/Gutenberg:Permission_How-To,

“Most permission request are not needed. The vast majority of
Project Gutenberg eBooks are in the public domain in the US. This
means that nobody can grant, or withhold, permission to do with

this item as you please. "As you please" includes any commercial
use, republishing in any format, making derivative works or
performances, etc.”

- The Project Gutenberg page for this book includes music notation

written in MusicXML!

Part 4: Variation 30 of Johann Sebastian Bach’s “Goldberg Variations”

(BWV 988).

- Image is in the public domain and obtained from Wikimedia

Commons: https://en.wikipedia.org/wiki/File:Quodlibet.jpg

- More information on Goldberg Variations:

https://en.wikipedia.org/wiki/Goldberg_Variations

https://commons.wikimedia.org/wiki/File:Ricercar_a_6_BWV_1079.jpg
https://commons.wikimedia.org/wiki/File:Ricercar_a_6_BWV_1079.jpg
https://en.wikipedia.org/wiki/The_Musical_Offering
https://commons.wikimedia.org/wiki/File:Bwv1001-adagio-handwriting.jpg
https://commons.wikimedia.org/wiki/File:Bwv1001-adagio-handwriting.jpg
https://en.wikipedia.org/wiki/Sonatas_and_partitas_for_solo_violin_%28Bach%29
https://en.wikipedia.org/wiki/Sonatas_and_partitas_for_solo_violin_%28Bach%29
http://www.gutenberg.org/files/36308/36308-h/36308-h.htm
http://www.gutenberg.org/files/36308/36308-h/36308-h.htm
https://www.gutenberg.org/wiki/Gutenberg:Permission_How-To
https://en.wikipedia.org/wiki/File:Quodlibet.jpg
https://en.wikipedia.org/wiki/Goldberg_Variations

The Complete Guide to JFugue

 205

Part 5: The score of “Il Gran Mogol,” a recently discovered flute concerto
by Antonio Vivaldi. Identified in the National Archives of Scotland by

Andrew Wooley.

- Image is in the public domain and obtained from the National

Archives of Scotland. The copyright notice at
http://www.nas.gov.uk/terms/copyright.asp states, “The material

featured on this website (www.nas.gov.uk) is subject to Crown
copyright protection unless otherwise indicated. The Crown
copyright protected material may be reproduced free of charge in

any format or medium provided it is reproduced accurately, not
used in a misleading context and is acknowledged.”

- For more information, see
http://www.nas.gov.uk/about/101007.asp

Part 6: The Gaudeamus omnes, using square notation. From the 14th-
15th century Graduale Aboense.

- Image is in the public domain and obtained from Wikimedia

Commons:
https://commons.wikimedia.org/wiki/File:Graduale_Aboense_2.jpg

- For more information, see
https://en.wikipedia.org/wiki/Church_music

Part 7: “Tout par compas suy composes” by Baude Cordier (ca. 1380 –
ca. 1440)

- Image is in the public domain and obtained from Wikimedia
Commons:

https://en.wikipedia.org/wiki/File:Cordier_circular_canon.gif

- You can learn more about Baude Cordier here:
https://en.wikipedia.org/wiki/Baude_Cordier

- The musical notation is an example of “Eye music,” more
information for which may be found here:
https://en.wikipedia.org/wiki/Eye_music

http://www.nas.gov.uk/terms/copyright.asp
http://www.nas.gov.uk/about/101007.asp
https://commons.wikimedia.org/wiki/File:Graduale_Aboense_2.jpg
https://en.wikipedia.org/wiki/Church_music
https://en.wikipedia.org/wiki/File:Cordier_circular_canon.gif
https://en.wikipedia.org/wiki/Baude_Cordier
https://en.wikipedia.org/wiki/Eye_music

The Complete Guide to JFugue

 206

The Complete Guide to JFugue: Programming Music in Java™
Second Edition

