
 » Quick reference for the ESP8266 » MicroPython tutorial for ESP8266 »

1. Ge�ng started with MicroPython on the ESP8266

1. Getting started with MicroPython on the
ESP8266

Using MicroPython is a great way to get the most of your ESP8266 board. And vice versa, the
ESP8266 chip is a great pla�orm for using MicroPython. This tutorial will guide you through
se�ng up MicroPython, ge�ng a prompt, using WebREPL, connec�ng to the network and
communica�ng with the Internet, using the hardware peripherals, and controlling some external
components.

Let’s get started!

1.1. Requirements

The first thing you need is a board with an ESP8266 chip. The MicroPython so�ware supports
the ESP8266 chip itself and any board should work. The main characteris�c of a board is how
much flash it has, how the GPIO pins are connected to the outside world, and whether it
includes a built-in USB-serial convertor to make the UART available to your PC.

The minimum requirement for flash size is 1Mbyte. There is also a special build for boards with
512KB, but it is highly limited comparing to the normal build: there is no support for filesystem,
and thus features which depend on it won’t work (WebREPL, upip, etc.). As such, 512KB build

will be more interes�ng for users who build from source and fine-tune parameters for their
par�cular applica�on.

Names of pins will be given in this tutorial using the chip names (eg GPIO0) and it should be
straigh�orward to find which pin this corresponds to on your par�cular board.

1.2. Powering the board

If your board has a USB connector on it then most likely it is powered through this when
connected to your PC. Otherwise you will need to power it directly. Please refer to the
documenta�on for your board for further details.

1.3. Getting the firmware

1. Getting started with MicroPython on the ESP8266 — ... https://docs.micropython.org/en/latest/esp8266/tutorial/i...

1 de 5 07/05/22 14:47

https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/esp8266/quickref.html
https://docs.micropython.org/en/latest/esp8266/quickref.html
https://docs.micropython.org/en/latest/esp8266/tutorial/index.html
https://docs.micropython.org/en/latest/esp8266/tutorial/index.html
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#getting-started-with-micropython-on-the-esp8266
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#requirements
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#powering-the-board
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#getting-the-firmware

The first thing you need to do is download the most recent MicroPython firmware .bin file to
load onto your ESP8266 device. You can download it from the MicroPython downloads page.
From here, you have 3 main choices

• Stable firmware builds for 1024kb modules and above.
• Daily firmware builds for 1024kb modules and above.
• Daily firmware builds for 512kb modules.

If you are just star�ng with MicroPython, the best bet is to go for the Stable firmware builds. If
you are an advanced, experienced MicroPython ESP8266 user who would like to follow
development closely and help with tes�ng new features, there are daily builds (note: you actually
may need some development experience, e.g. being ready to follow git history to know what
new changes and features were introduced).

Support for 512kb modules is provided on a feature preview basis. For end users, it’s
recommended to use modules with flash of 1024kb or more. As such, only daily builds for 512kb
modules are provided.

1.4. Deploying the firmware

Once you have the MicroPython firmware (compiled code), you need to load it onto your
ESP8266 device. There are two main steps to do this: first you need to put your device in boot-
loader mode, and second you need to copy across the firmware. The exact procedure for these
steps is highly dependent on the par�cular board and you will need to refer to its documenta�on
for details.

If you have a board that has a USB connector, a USB-serial convertor, and has the DTR and RTS
pins wired in a special way then deploying the firmware should be easy as all steps can be done
automa�cally. Boards that have such features include the Adafruit Feather HUZZAH and
NodeMCU boards.

If you do not have such a board, you need keep GPIO0 pulled to ground and reset the device by
pulling the reset pin to ground and releasing it again to enter programming mode.

For best results it is recommended to first erase the en�re flash of your device before pu�ng on
new MicroPython firmware.

Currently we only support esptool.py to copy across the firmware. You can find this tool here:
h�ps://github.com/espressif/esptool/, or install it using pip:

pip install esptool

1. Getting started with MicroPython on the ESP8266 — ... https://docs.micropython.org/en/latest/esp8266/tutorial/i...

2 de 5 07/05/22 14:47

http://micropython.org/download#esp8266
http://micropython.org/download#esp8266
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#deploying-the-firmware
https://github.com/espressif/esptool/
https://github.com/espressif/esptool/

Versions star�ng with 1.3 support both Python 2.7 and Python 3.4 (or newer). An older version
(at least 1.2.1 is needed) works fine but will require Python 2.7.

Any other flashing program should work, so feel free to try them out or refer to the
documenta�on for your board to see its recommenda�ons.

Using esptool.py you can erase the flash with the command:

esptool.py --port /dev/ttyUSB0 erase_flash

And then deploy the new firmware using:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect 0
esp8266-20170108-v1.8.7.bin

You might need to change the “port” se�ng to something else relevant for your PC. You may
also need to reduce the baudrate if you get errors when flashing (eg down to 115200). The
filename of the firmware should also match the file that you have.

For some boards with a par�cular FlashROM configura�on (e.g. some variants of a NodeMCU
board) you may need to manually set a compa�ble SPI Flash Mode. You’d usually pick the fastest
op�on that is compa�ble with your device, but the -fm dout op�on (the slowest op�on) should

have the best compa�bility:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect -fm dout 0
esp8266-20170108-v1.8.7.bin

If the above commands run without error then MicroPython should be installed on your board!

If you pulled GPIO0 manually to ground to enter programming mode, release it now and reset
the device by again pulling the reset pin to ground for a short dura�on.

1.5. Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over
UART0 (GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial convertor,

1. Getting started with MicroPython on the ESP8266 — ... https://docs.micropython.org/en/latest/esp8266/tutorial/i...

3 de 5 07/05/22 14:47

https://github.com/espressif/esptool/wiki/SPI-Flash-Modes
https://github.com/espressif/esptool/wiki/SPI-Flash-Modes
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#serial-prompt

depending on your board. The baudrate is 115200. The next part of the tutorial will discuss the
prompt in more detail.

1.6. WiFi

A�er a fresh install and boot the device configures itself as a WiFi access point (AP) that you can
connect to. The ESSID is of the form MicroPython-xxxxxx where the x’s are replaced with part
of the MAC address of your device (so will be the same every�me, and most likely different for
all ESP8266 chips). The password for the WiFi is micropythoN (note the upper-case N). Its IP
address will be 192.168.4.1 once you connect to its network. WiFi configura�on will be
discussed in more detail later in the tutorial.

1.7. Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately a�er it, here
are troubleshoo�ng recommenda�ons:

• Be aware of and try to exclude hardware problems. There are 2 common problems: bad
power source quality and worn-out/defec�ve FlashROM. Speaking of power source, not just
raw amperage is important, but also low ripple and noise/EMI in general. If you experience
issues with self-made or wall-wart style power supply, try USB power from a computer.
Unearthed power supplies are also known to cause problems as they source of increased
EMI (electromagne�c interference) - at the very least, and may lead to electrical devices
breakdown. So, you are advised to avoid using unearthed power connec�ons when working
with ESP8266 and other boards. In regard to FlashROM hardware problems, there are
independent (not related to MicroPython in any way) reports (e.g.) that on some ESP8266
modules, FlashROM can be programmed as li�le as 20 �mes before programming errors
occur. This is much less than 100,000 programming cycles cited for FlashROM chips of a type
used with ESP8266 by reputable vendors, which points to either produc�on rejects, or
second-hand worn-out flash chips to be used on some (apparently cheap) modules/boards.
You may want to use your best judgement about source, price, documenta�on, warranty,
post-sales support for the modules/boards you purchase.

• The flashing instruc�ons above use flashing speed of 460800 baud, which is good
compromise between speed and stability. However, depending on your module/board, USB-
UART convertor, cables, host OS, etc., the above baud rate may be too high and lead to
errors. Try a more common 115200 baud rate instead in such cases.

• If lower baud rate didn’t help, you may want to try older version of esptool.py, which had a
different programming algorithm:

pip install esptool==1.0.1

1. Getting started with MicroPython on the ESP8266 — ... https://docs.micropython.org/en/latest/esp8266/tutorial/i...

4 de 5 07/05/22 14:47

https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#wifi
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html#troubleshooting-installation-problems
http://internetofhomethings.com/homethings/?p=538
http://internetofhomethings.com/homethings/?p=538

This version doesn’t support --flash_size=detect op�on, so you will need to specify

FlashROM size explicitly (in megabits). It also requires Python 2.7, so you may need to use
pip2 instead of pip in the command above.

• The --flash_size op�on in the commands above is mandatory. Omi�ng it will lead to a

corrupted firmware.
• To catch incorrect flash content (e.g. from a defec�ve sector on a chip), add --verify switch

to the commands above.
• Addi�onally, you can check the firmware integrity from a MicroPython REPL prompt

(assuming you were able to flash it and --verify op�on doesn’t report errors):

import esp
esp.check_fw()

If the last output value is True, the firmware is OK. Otherwise, it’s corrupted and need to be
reflashed correctly.

• If you experience any issues with another flashing applica�on (not esptool.py), try esptool.py,
it is a generally accepted flashing applica�on in the ESP8266 community.

• If you s�ll experience problems with even flashing the firmware, please refer to esptool.py
project page, h�ps://github.com/espressif/esptool for addi�onal documenta�on and bug
tracker where you can report problems.

• If you are able to flash firmware, but --verify op�on or esp.check_fw() return errors even

a�er mul�ple retries, you may have a defec�ve FlashROM chip, as explained above.

1. Getting started with MicroPython on the ESP8266 — ... https://docs.micropython.org/en/latest/esp8266/tutorial/i...

5 de 5 07/05/22 14:47

https://github.com/espressif/esptool
https://github.com/espressif/esptool

